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Abstract

A spectral density matrix estimator for stationary stochastic vector processes is studied. As the duration of the analyzed data tends to
infinity, the probability distribution for this estimator at each frequency approaches a complex Wishart distribution with mean equal to an
aliased version of the power spectral density at that frequency. It is shown that the spectral density matrix estimators corresponding to
different frequencies are asymptotically statistically independent. These properties hold for general stationary vector processes, not only
Gaussian processes, and they allow efficient calculation of updated probabilities when formulating a Bayesian model updating problem in the
frequency domain using response data. A three-degree-of-freedom Duffing oscillator is used to verify the results. © 2002 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Frequency-domain analysis is widely used in almost
every field of research involving analysis of continuous
or discrete time-varying signals. In particular, Fourier
analysis is a very popular tool for time-history data
processing because it provides an efficient and systematic
procedure to capture important frequency-content infor-
mation. A common task is to fit a parameterized theore-
tical Fourier spectrum to the spectrum obtained from
measured time histories. A straightforward least-squares
fit is usually found to give poor results. Therefore, it is
desirable to develop a theoretically sound approach for
fitting spectra. In this paper, statistical properties of a
spectral density estimator, such as the mean and the
covariance matrix of the estimator, are presented for
each frequency. Furthermore, it is shown that the spectral
density estimator is asymptotically statistically indepen-
dent at different frequencies for general stationary vector
processes. The proof does not assume a Gaussian stochas-
tic model for the signal process. A three-degree-of-free-
dom Duffing oscillator is used to verify the results. These
results allow for a mathematically rigorous frequency-
domain formulation of the problem of model updating
within a Bayesian framework [1,2] using response data.
The approach is applicable in the case of a stationary
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stochastic model for the response of linear or non-linear
systems subject to Gaussian or non-Gaussian input.

2. Spectral density estimator

Consider a process generating time-history signals that
are modeled as realizations of a real continuous-time
stationary stochastic vector process X(f) = [x1(?), x,(?), ...,
xd(t)]T, that may be Gaussian or non-Gaussian and that
has mean E[X(1)] = p = [y, o, ..., gl', Vi € R. Now,
consider the corresponding discrete-time stochastic vector
process {x(0), x(Af),...,...,x((N — 1)Ar)} whose realization
corresponds to the sampled data in applications. We define a
related frequency-domain stochastic vector process X" with
its ath element at frequency w;, given by a modified discrete
Fourier transform

1 N=t
XN(w) = —= Y e Wy, (A (1)
where o, =kAw, k=0,1,...,INT(N/2) and Aw=
27/NAt.

Furthermore, denote the real and imaginary parts of
XY (wy) by RY(w,) and IY (w;), respectively, that is:

Rlw)=Re[XM(@p| L) =mm[X{@)] @
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Note that

[.La(l _ e*iwkNAf)

\/N(l _ e—ikat)

N-1 o
Hxin] = 72 e

pall —e7)
\/N(l _ e—ikat)
Therefore, E[Rﬁf(wk)] = ( and E[Ig(wk)] =0.
The («, B) element of the spectral density matrix estima-
tor is defined for o, 8= 1,2,...,d by

At w
— X0 (w)X3 ()

Slc\z],ﬁ(wk) o

N—1N—-1

ZWN Z Z 1wk(i*l)Afxa0'At)xB(lAt) 3)

where z* denotes the complex conjugate of z.

In Section 3, some important statistical properties of the
spectral density estimator are introduced. In Section 4, it is
shown that S (w) and sV (o) are independent asymptoti-
cally as N — o0, where o # o' and 0 < w, o’ < m/At, the
Nyquist frequency.

3. Statistical properties of the spectral density estimator

In this section, the probability density function of the
spectral density estimator at a particular frequency wy is
presented.

First, by taking expectation of Eq. (3), one obtains the
following

oA g G — DA (4)

ZZ

where ¢, gl(G — DAt] = E[x,(jADxg(IAD] — pomg, for
a,B=1,2,...,d, is the cross-covariance function between
Xq and xg with time lag (j — DAz

By grouping together terms with the same values of
(j — DAt, one can obtain the following expression for the
expected value of the spectral density estimator

[ aﬁ(wk)]

E[S) g(wp)]

Ar N1 o —
4 53 dupiBne Y 4 (A0 ]
e
J=0
where ¢; is given by:
=1 ?izz(l_%),jzl )

Note that this relationship is exact and takes care of the
aliasing and leakage effects automatically. Furthermore,
E [SZ’B(wk)] can be calculated efficiently using the function
FFT in Matlab [3].

By using ¢, g(1) = % SQ,B(Q)eiQT d(, Eq. (4) can be

rewritten as

E[sf{ B(wk)]

At oo N—-1N-1 . )
Z e‘(Q_“’*')(’_Z)AtSa,B(Q) d0

2’1TN — 0 =0 1=0
0 -1 N—1
:J NZ NZ L i wmang- s, ( 3 )dg
— 00 =0 =0 ZTI'N Al
I 3
= F (£ — 0 ADS, g A7 d¢ @)
where & = QAr and F"(n) is the Fejer kernel [4]:
)
sin“(Nn/2)
FN()y = —— 1'%/ 8
(M= 5N sin(m/2) ®)

Note that F"(n) is periodic with period 2m. By taking
N — o

s {5t

_ r Z 8(€ — w,At + 2jm)S,, B(é)df

]_*00

where the terms in the summation produce an aliased
version of the power spectral density at frequency wy.

Now, RZ(wk) and I[IIV (wy) are Gaussian distributed as N —
oo by using the Central Limit Theorem [5]. Furthermore, as
N — oo, it was shown [6] that the covariance matrix I'x(w;)
of the vector [RY (wk)T, v (a)k)T]T has the form:

%Re{E[SN(wk)]} _llm{E[SN(wk)]}

(s o]t Srefels @]

(10)

]\1,1_1}010 Iy(wp) =

Eq. (10) states that RY (wy) and o (wy) have equal covar-
iance matrices (1/2)Re{E[SN(wk)]}, as N — oo, Also, as
N — o, the cross-covariance between RY (wy) and o @)
has the property —Im{E[SN(wk)]} = Im{E[SN(wk)]}T, i.e

lim E[RY (@01 (@0 ] = — lim E[1¥(00RF(w0)]

because of the symmetry of I'y(w;). The latter property
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implies also that the diagonal elements of Im{E[SN(wk)]}
are equal to zero as N — o0, i.e.

lim E[RY ()L (wy)] = 0, a=1,2,...d.

Therefore, the complex vector X" (wy) has a complex multi-
variate Gaussian distribution [7] with zero mean as N — 0.

Assume now that there is a set of M independent and
identically distributed time histories whose realizations
correspond to sampled data from the same process X(7).
As N — oo, the corresponding frequency-domain stochastic
processes XN’(’”)(wk), m=1,2,...,M, are independent and
follow an identical complex d-variate Gaussian distribution
with zero mean [7]. Also, as N — o and if M = d, the
average spectral density estimator

(12)

1 M

N.M — N.(m)
§" M (w) = M,,;S (@) (1D
follows a central complex Wishart distribution of dimension
d with M degrees-of-freedom [7,8] and mean
E[S"Y ()] = E[S" ()] given by Eq. (9):

M—d

Tr—d(d—l)/zMM—d+d2 SN,M(wk)

frel- 7 M

[~ p)!]‘E[s%k)]

p=1

-1
X exp( -M tr{EI:SN(wk)] SN’M(wk)})

where the («, ) element of the matrix E [SN(wk)] is given by
Eq. (5). Here, and tr[A] denote the determinant and the
trace, respectively, of a matrix A.

Note that in the special case of d = 1, this distribution
reduces to a Chi-square distribution with 2M degrees-of-
freedom and mean E[S" (w;)], which is given by:

MM[sVM )M’l NM
5] o ] ()
M — DYE[SY (@]} E[S¥(w)]
(13)

Another special case is when M = 1 (i.e. no averaging is
performed), then each of the diagonal elements Sﬁl,a(wk), o=
1,2,...,d follows an exponential distribution as N — oo :

R e ——" PR (14)
@ E[SY (@] E[Sq o(@y)]

In this section, the PDF of the spectral density matrix estimator
was given at a particular frequency. In Section 4, it is shown
that the spectral density matrix estimators are independent at
different frequencies.

4. Asymptotic independence properties of the spectral
density estimator

In this section, it is shown that the spectral density esti-

mators are independent at any two different frequencies w
and @' as N — oo,

4.1. R)(w) with Rj()

First, by using Egs. (1) and (2), one can easily obtain the
following:

E[(R’j(w) - E[Rﬁ'(w)])(R (@) — E[Rﬁ(w )])]
= E[RZ (w)Rg(w’)] - E[Rf{ (w)]E[R’g (w')]
v 2 3

— Motp) cos(jwAr) cos(lw' Ar) (15)

n[\/]|

(Elx(jAnNxa(IAD)]

Let S, g({2), which is assumed to be finite V{2 € R, be the
cross-spectral density between x,, and xg at frequency (2. By
usmg the fact that the cross-covariance function ¢, g(7) =
[% 0 S0 p(De'?” dQ and cos(z) = (e* + e )2,

E (i - o i~ o )]

o ] NZINZ1 ) »
=J' m Z Z e1.(2(] I)AZSQ’B(\.Q)[GWUA[ +e 1]wAt]
- j=0 =0

x [eilm’At + e—ilm'Ar] 40

Oo AN j(2+ w)At+Hil(w — DA
2+ w)At+il(w' — t
J oo4N 2 Z

+ eij(!2+w)At+il(7w’7!2)At + eij(.()fw)AtJril(w’f.Q)At

+ eij(.(lfw)At+il(fw/f!l)At]Sa!B(Q) dn

= rjw HYp(Q 0,0 dQ + J: HYp(Q 0, — ) d0
+ rjw HY (2 —w,0) d0
+ JiomHﬁfg(Q;—w,—w') d (16)

where HN(Q; o, ) is defined as:

SaB(Q) N-—1 . N-—1 —
5 z ij(2+ w)Ar z il(w —OQ)Ar
e € €

Hap% 0,0) = =45

=0 1=0
(17)

If [ # wand || # o'

[1- eiNAz(.(Hw)][l _ eiNAt(w/*.Q)]

N . N
HUlsB(Q’ w, @ ) - 4N[1 _ eiAz(!2+m)][1 _ eiAt(m’—Q)] SO‘sB(Q)

(18)
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By using sin(z) = (e Z_eTiy2i,

H) (0 0, 0')

2 2
= i S(x,B(‘Q)
T2+ wAr] . | (0 — D)Ar
AN sm[ 5 ]sm[ ]

. , , + !
eKNflmmyzsin[ (2 + )NA: ]Sm[ (' — DN ]

2
19)
Then, the following inequality can be obtained since |e""| =
1 and [sin(r)| = 1 (r € R) :

SQ,E(Q)
N Sin[ 0 +2a))At ]Sin[ (0 — Q)At ]

HYp(0; 0, )| =

2
(20)

By taking the limit as N — oo

]351301153(0; w,0)=0 if|Q# wand |0 # o' (21)
Similarly, HJp(02; —w, o), HYp(Q:w, —0') and H)p
(2; —w, — ') also tend to zero as N — oo, if || # w and
|0 # o'

Now, we consider H} 3(42; 0, 0') at Q] = wor Q] = .
First, at 2 = —w

) R At
HQB(Q; w,0)= 7’12( ) IZZO g @ —Mar

= : 4[1 _ eiAt(w’f.Q)] (22)
which is finite. Similarly, it can be shown that
HZB(.Q; o, ') is finite at 2 = w’. Next, consider 2 = w
or 0= —o

= 1NAz(!2+m)][1 1NAf(w (2)]

Hyp(2 0,0)) =

AN[1 — 1At(!2+w)][1 — eldi(o'- .())] “B(‘Q)
(23)

AsN —ooand Q= wor —o’

1\11220 Hg{ﬁ(-(k w, (D/) =0 (24)

That is, HQB(Q o, ®') is finite at 2 = *w and 0= *+w'.
Similarly, it can be shown that aB(Q 0, — o),
HCIZB(.Q; —w, ) and Hé\fﬁ((); —w, —w') are finite at 2=
+wand 0= *o'

Therefore, aﬁ((l w, ), Haﬁ(.(l w, —o), Haﬁ((l
—w, ') and HaB(.Q —w,—w') tend to zero as N — oo
if [ # o and |OQ| # o and they are finite as N — oo

if Q=0 o |Q=o. Tt can be concluded
that f ooH ({0, ® " do, I wHY (% o, —w') dO,
2 aﬁ(-Q —w, ) d and % aB(Q w, —w') d0

tend to zero as N — o0 and so from Eq. (16):

lim E[(Rfj(w) - E[Rﬁ(w)])(Rg(w’) - E[Rg(w’)])]

N—o

=0, ifw # o' (25)

4.2. I (w) with I3 ()

Similarly, it can be proved that limy_,q E[(Ig(w) -
EL) () (o)) — E[I5(@")D] = 0 as follows

(o o )

N—-1N—-1

== Z D (Elx,(jAnxg(An]

j=0 =0

— Malp) sm(ijt) sin(lw’At)

_ 4NJ Z RIS l)AtS (_(2)

j=0 =0

x[elijt —e 1]u)At][ ilw'At e*ilw’At] 40

00 N—-—1N—-1 0 Artile— DA
— 1j(2+ w) t+1(o) At
W S

_ elj(.()‘*’w)At‘Fll(*w —O)At elj(ﬂ*w)At‘Fll(w —O)At

i eij(.(l—w)At+iZ(—w’—!l)At] S, 5(1) A2
«a,

N-1 N-1
= — Jw L Z eij(!Hw)At Z eil(w’f!z)At
—w AN | & -
Jj=0 =0

1 N-—-1
. S
_ z el_/(!2+w)At 2 ell( o' —O)At

j:O =0
N-—1

_ Z ij(Q— w)Ar Z eiz(w’—n)m
=0

+ Z eu(n w)At Z eil(—m’—!))At]Sa’B(Q) d0

Jj= =0
= —J H,ﬁxﬁ(ﬂ; w, ') d0
+ J HYp(Q 0, — ) d0
+ J HY (2 —w,0) d0
_ 17 Hi’ﬁ(_(); _
where HaB is given by Eq. (17).
As shown in Section 4.1, [¥,

Hﬁﬁ((z o, —w)d0, %
[z HaB(‘Q

w,—w')d0 (26)

/3(.(2 w, w') d0, I .
HC’XB(Q —0,0)dQ  and
—w, —w') d tend to zero as N — 00, 50

- sl i~ )] -

ifw# o 27

. N
Jim | (13 (@
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4.3. R)(w) with I§()

Finally, we prove: limy_o E[(R)(w) — E[RY(w)]) X
(I3 () = EUZ ("D = 0

(R )

N—1N—-1

D (Elxg(jAnxg(An]

1
N = =
~ Maig) cOs(jwA?) sin(lw'Ar)

00 1 N-IN—-1 a .
:J W Z Z el!)(}*Z)AtSa!B(Q)[elijt +eflijt]
— 0 1
Jj=0 =0

g g
x[ellw Ar e ilw At] dn
00 | N-1nN-d O+ whrilte — A
_ Q2+ o)At +il(0' — t
JLaw g X

. o s a0
_ elj(!2+w)At+1l( o' —O)At +elj(!2 w)At+il(w' — DAt

_ eij(!lfw)AHil(fw’7!))AZ]S p(-()) d0n
a,

Joo 1 [Nzl P Nil o/ -
_ (24 w)At illw— t
= — (& €

— 0 4N1 =0 =0

_ Nz_:l eij(.()+w)At Nil eil(fw’f.Q)At

j=0 1=0

+ Nz_:l eij(.()*w)Az Nil eil(w'*.())Az

j=0 1=0
N-—1

N-1
_ Z ey(!l—w)At Z e1Z(—w — At ]SQ,B(‘Q) dn
Jj=0

=0

=i r_ow HY (2 0,0) d0
+ irjm HYp(Q 0, — ) d0
- iﬁow HY (2 —w,0) d0
+ iﬁom H) g2 — 0, — ) d0 (28)

where H,i\fﬁ is given by Eq. (17).
Again, [* o Ho p(Q; 0, ') A2, [© o HY (0 0,—0') O,
|ZwHY p(2; —w, @) dQ and

Falt) —] my

Fig. 1. Three-DOF Duffing oscillator.
fofooHéXB(Q; —w, — ') d tend to zero as N — o0, 50
s (k20 - ) e - )]

=0, if w# o (29)

4.4. Sy p(w) with Sy (")

We conclude that any element in the set
{R)(w), I (0), R} (w), I3 (w)} with any element in the set
{R];](a)'),IN(w/),Rg(w/),lév(w')} gives an uncorrelated
pair, where o, 3,7, 0 = 1,2,...,d and w # o'. Furthermore,
RY() and IY(0) are Gaussian distributed V2 € R and
a=1,2,...,d as N — o even if the stochastic process x
is not Gaussian (Section 3). Since uncorrelated Gaussian
random variables are independent, as N — oo each element
in the set {Rév(w),lg(w),Rg(w),lg(w)} is statistically
independent of each element in  the  set
(R (o), I)(0), R} ('), I§ (@)},  where  a,B,7.86=
1,2,...,d and w # @'. By using Egs. (1)-(3), the following
can be obtained:

At "
Sap(©@) = 5 Xa(@)Xp " (0)

Y

= {[Rg(w)Rﬁ(w) + Iy (@) (w)] (30)

+i[12’ (@R} (w) — Ry ()l (w)]}

Therefore, Sl,l/’ p(w) and Sﬁi s(w) are statistically independent
ifa,B,y,6=1,2,....d, w# o and 0 < w, 0’ < 7/At, the
Nyquist frequency.
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5. Illustrative example

Consider a three-degree-of-freedom Duffing oscillator as

shown in Fig. 1:

X ¢y tc —Cy 0
M| i | + —Cy ctey —c
X3 0 —C3 c3
ky + ky —k, 0 X1
+ —ky kyt ks —ks X5
0 —ks3 k3 X3

3 3
mxy + po(xp — xp)
3 3
T (e = x1)7 + psle — x3)

maz — x,)°

[ f1(2)
=| £®
L f3(1)

X
X

X3

€29

where M = I kg is the mass matrix, ¢; = 2.0 X 103N s/cm,

J

ki = 0.5 N/cm and p; = 0.1 N/cm® are the damping coeffi-
cient, linear stiffness and third order stiffness for the jth floor
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Fig. 3. PDF of the real part of the FFT for the 1st DOF response.
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Fig. 4. CDF of the real part of the FFT for the 1st DOF response.
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(j = 1,2,3), respectively. The small amplitude fundamen-
tal frequency of the structure is 0.5 Hz. The external force
[f1./2./31" is assumed to be independent Gaussian white
noise with spectral intensity 5.0 X 10~* N%s.

The response time history is simulated using the function
‘ODE45’ in Matlab [3]. The duration and sampling time
interval are 5000 s and 0.02 s, respectively. Fig. 2 shows
the PDF of the 1st DOF response p(x;), estimated using
250000 samples (solid) and its best fitting curve in the
class of Gaussian distributions. It can be seen that the struc-
tural response is non-Gaussian [9]. The standard deviation
of these samples is 1.2 cm.

Two thousand realizations, each with duration 100 s and
sampling time interval 0.02 s, are generated and their FFTs
are calculated. Fig. 3 shows the PDF for Rllv (w) at @ = 0.25,
0.5, 1.0, 1.5 Hz. It can be seen that the Gaussian approx-
imation for the real part of the FFT is accurate although the
structural response is not Gaussian. Furthermore, the
corresponding cumulative distribution function (CDF) is
shown in Fig. 4. The solid line corresponds to the best
fitting Gaussian CDF and the dashed line corresponds to
the CDF estimated using simulation. It can be seen that the
two curves lie virtually on top of each other, implying that
the real part of the FFT of the spectral density is well
approximated by the Gaussian distribution. The same
conclusion can be drawn for the imaginary part and for
the response of other floors.

Fig. 5 shows the sample correlation coefficients for the
spectral density of the response at the 1st DOF Sll\f (w) at
0.25, 0.5, 1.0, 1.5 Hz with other frequencies. It can be seen
that the coefficients of correlation are around zero at each
frequency, except when the frequencies match where it is
unity. The same conclusion can be drawn for the other
components (auto or cross-terms) of the spectral density
matrix.

6. Concluding remarks

A spectral density matrix estimator is defined based on a
finite number, N, of data points which takes care of aliasing
and leakage effects automatically. Furthermore, the
probability density function of this spectral density matrix
estimator for a general stationary stochastic vector process
as N — oo is presented. It is also proved that for such a
process, the spectral density estimators corresponding to
different frequencies are asymptotically independent as
N — oo. This implies that the spectral density estimators
of the response of a linear or non-linear dynamical system
subject to input modeled as a stationary stochastic process
are always asymptotically independent at different frequen-
cies as N — o0,
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