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Abstract

The problem of identification of the modal parameters of a structural model using measured ambient response time histories is addressed.
A Bayesian time—domain approach for modal updating is presented which is based on an approximation of a conditional probability
expansion of the response. It allows one to obtain not only the optimal values of the updated modal parameters but also their associated
uncertainties, calculated from their joint probability distribution. Calculation of the uncertainties of the identified modal parameters is very
important if one plans to proceed in a subsequent step with the updating of a theoretical finite-element model based on modal estimates. The
proposed approach requires only one set of response data. It is found that the updated PDF can be well approximated by a Gaussian
distribution centered at the optimal parameters at which the updated PDF is maximized. Examples using simulated data are presented to
illustrate the proposed method. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of identification of the modal parameters of
a linear structural model using dynamic data has received
much attention over the years because of its importance in
model updating, response prediction, structural control and
health monitoring. Many methodologies have been formu-
lated, in both time and frequency domain, for the case where
the input excitation has been measured [1,2].

Much attention has also been devoted to the identification
of modal parameters in the case where no input but only
response measurements are available. In particular, a lot of
effort has been devoted to the case of free vibrations or
impulse response and to the case of ambient vibrations. In
the former case, often time—domain methods based on
ARMA models are employed, using least-squares as an
integral part of their formulations. It has been found that
the least-squares method yields biased estimates [3]. A
number of methods have been developed to eliminate this
bias, including the instrumental matrix with delayed obser-
vations method [3], the correlation fit method [4], the double
least-squares method [5,6] and the total least-squares
method [7]. A comprehensive comparison of such methods
can be found in Ref. [8].

Ambient vibrations surveys (AVS) have also attracted
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much interest because they offer a means of obtaining
dynamic data in an efficient manner, without requiring the
set-up of special dynamic experiments which are usually
costly, time consuming, and often obtrusive. In AVS, the
naturally occurring vibrations of the structure (due to wind,
traffic, micro-tremors) can be measured and system identi-
fication techniques can be used to identify the small-ampli-
tude modal frequencies and modeshapes of the lower modes
of the structure. The assumption usually made is that the
input excitation is a broad-band stochastic process
adequately modeled by white noise. Many time—domain
methods were developed to tackle this problem. One exam-
ple is the random decrement technique [9] which is based on
curve-fitting of the estimated random decrement functions
corresponding to various triggering conditions. Another
example is the instrumental variable method [10]. Several
methods are based on fitting directly the correlation func-
tions using least-squares type of approaches [11]. Different
ARMA-based methods have been proposed, for example,
the two-stage least-squares method [12]. The prediction
error method [13,14] and the subspace matrices decomposi-
tion method [15] utilize the Kalman filter [16] to obtain the
modal parameters. The use of extended Kalman filter for
estimating the dynamic properties of a linear multi-degree-
of-freedom (MDOF) system was proposed in Refs. [17—19].
The procedure starts with a single-degree-of-freedom
(SDOF) system and expands the number of degrees of free-
dom (DOF) one by one to efficiently identify all parameters
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using incomplete response measurements. Methods for
treating nonlinear systems have also been investigated
using equivalent multi-input—single-output system [20].

The results of modal identification are usually restricted
to the ‘optimal’ estimates of the modal parameters.
However, there is additional information, which is valuable
for further processing, related to the uncertainty associated
with the above estimates. For example, in the case where the
results of the above modal identification are used to update
the theoretical finite-element model of a structure, the
updating procedure usually requires the minimization of a
positive-definite quadratic objective function involving the
differences between the theoretical and identified experi-
mental modal parameters. The weighting matrix in this
objective function must reflect the uncertainties in the
values of the identified modal parameters in a way that
parameters which are more uncertain are weighed less. A
proper selection is to set the weighting matrix equal to the
inverse of the covariance matrix of these parameters. In
practice, usually this covariance matrix is estimated by
calculating the statistics of the optimal estimates of the
modal parameters obtained from many sets of ambient data.

Recent interest has been developed for determining the
uncertainties of the modal estimates in AVS using Bayesian
probabilistic approaches. In Refs. [21,22], a Bayesian prob-
abilistic system identification framework was presented for
the case of measured input. In this work, we present a
Bayesian time—domain approach for modal updating using
ambient data. The proposed approach allows for direct
calculation of the probability density function (PDF) of
the modal parameters.

In the next section, we demonstrate first with an SDOF
example the computational difficulties encountered when
casting the exact formulation of the Bayesian methodology
for modal updating using time—domain data. We then
present for the general case of linear MDOF systems a
new approximate approach which overcomes these difficul-
ties and renders this problem computationally feasible. In
the last section, we demonstrate the proposed approach with
numerical examples.

2. Bayesian time—domain approach
2.1. Exact SDOF formulation

Consider a SDOF oscillator with equation of motion:
¥+ 2Lwgk + wix = f(1) 1)

where w and { are the natural frequency and damping ratio
of the oscillator, respectively, and f(r) the Gaussian white
noise with spectral density:

Sf(w) = SfO 2

It is well known [23] that the response x(7) is a Gaussian

random process with zero mean, auto-correlation function

R.(D = iﬂ;e%‘”{’lr‘ cos(wypT) + isin(a)oD|'r|)
2Ly 1-2
3)
and spectral density function
S
Su(@) = f“ @

(@ = w)* + (2{wwy)’

where wop = wyy/1 — £ is the damped natural frequency of
the oscillator.

Assume discrete data, with time step Az, and let y(k)
denote the measured response at time ¢ = kAt. Also, assume
that due to measurement noise and modeling error, there is a
difference between the measured response y(k) and the
model response x(k), referred to hereafter as prediction
error, which can be adequately represented by a discrete
white noise process n with zero mean and variance 0',%,
that is,

y(k) = x(k) + n(k), k=1,..,.N 5)

where the prediction error process n satisfies:
Eln(m)n(p)] = 075, ©)

where 8,,,,[, denotes the Kronecker delta function, which is
given by:

1 iftm=p
Opp = (N
0 ifm#p

Let a = [wy, £, Syo, on]T denote the vector of parameters
to be identified. Also, let Y,y denote the random vector
[y(l),...,y(N)]T, where y(k), k=1,...,N is given by Eq.
(5). It follows that the PDF of Y, y for given a is

P(Yyx] @) = @m " 0@)| ™ exp[ ~ L YINT ' @Y1 v ]
®)

that is, it is an N-variate Gaussian distribution with zero
mean and covariance matrix I'(a) with (m, p) element
rm(a) = R.[(p — m)At|a] + a,%ém,p, where the auto-
correlation term R, is calculated from Eq. (3) for the given
system parameters a. In the above equation and throughout
this paper, the notation |A| is used to denote the determinant
of a matrix A.

Herein, we are concerned with the identification of the
modal parameter vector a given some measured data SA(],N.
Using Bayes’ theorem, the updated PDF of the model
parameters a given data SA{LN is given by

p@l¥,y) = c;p@)p(Y, yla) )

where ¢ is a normalizing constant such that the integral of
the right-hand side of Eq. (9) over the domain of a is equal
to unity. The term p(a) in Eq. (9) denotes the prior PDF of
the parameters. The term p(\A(l’N|a) is the dominant term on
the right-hand side of Eq. (9). It is given by Eq. (8),
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substituting Y, 5y with SA(],N, and reflects the contribution
of the measured data SA{LN in establishing the updated
(posterior) PDF of a. Note that the relative plausibility
between two values of a does not depend on the normalizing
constant ¢;. It only depends on the relative values of the
prior PDF p(a) and the relative values of p(f(l,N|a). In
order to establish the most probable value of a, denoted
by a and referred to as the ‘optimal’ parameters, one must
maximize p(a)p(Y, yla). However, for a large number of
observed data, which is usually the case in AVS, repeated
evaluations of the term p(f(l’N|a) for different values of
a becomes computationally prohibitive. This becomes
obvious from Eq. (8) by noting that it requires the calcula-
tion of the inverse and the determinant of the N X N matrix
I'(a) which becomes very expensive for large N. Therefore,
the Bayesian approach described above, based on direct use
of the measured data SA(I,N, becomes practically infeasible.
In the next section, we present a new approximate approach
which overcomes these difficulties and renders the problem
computationally feasible.

2.2. Proposed approximate MDOF formulation

Consider a system with N; DOFs and equation of motion:
Mx + Cx + Kx = F(r) (10)
where M, C and K are the mass, damping and stiffness

matrices of the oscillator, respectively, and F(¢) the
Gaussian white noise with spectral density matrix:

Sr(w) = Sko (11

Using modal analysis, we obtain the uncoupled modal
equations of motion:

4.0 + 24,0,4,(5) + wrq, (D) = f,(D),
]T

r=1,...N; (12)

where q(t) = [q,(?),...,qn,()]" is the modal coordinate
vector and f(¢) = [fi(?), ..., de(t)]T the modal forcing vector.
The transformation between the original coordinates
(forces) and the modal coordinates (forces) is given by

x(1) = @-q(1) 13)

f(r) = M®) ""F(1) (14)

where @ is the modeshape matrix, comprised of the mode-
shape vectors ¢ which are assumed to be normalized such
that:

¢ =1,

where i, is a measured DOF which is not a node of the rth
mode.

The spectral density matrix of the modal forcing vector
f(r) is given by

Sy(w) = S = (M®) ~'Spo(MP) " (16)

r=1,....N, (15)

It is well known [23] that the response x(¢) for given
parameters a is a Gaussian process with zero mean, spectral

density

N, N,
S0l =D > ¢ e

r=1 s=1

)
SieY
X . .
[(0F = &) + 200, (0} — o) = 2ow]
and correlation function
RV (7|a) = J S90(wla) €7 do (18)

Assume that discrete data are available at N(=N,)
measured DOFs. Also, assume that due to measurement
noise and modeling error, there is prediction error, i.e. a
difference between the measured response y(k) € R¥ and
the model response corresponding to the measured degrees
of freedom. The latter is given by Lyx(k) where L is an
N, X N, observation matrix, comprised of zeros and ones.
That is,

y(k) = Lox(k) + n(k) 19)

It is assumed that the prediction error can be adequately
represented by discrete zero-mean Gaussian white noise
n(k) € R™ with the following N X N, covariance matrix:

E[n(mn' (p)] = X,8,,, (20)

where §,,, is given by Eq. (7).

Here, we assume that only the lower N,, modes contribute
significantly to the response and we will identify only the
modal parameters corresponding to these modes. Specifi-
cally, the parameter vector a for identification is comprised
of: (1) w,, ¢, r=1,...,N,; (2) the elements of the first N,
columns of the N; X N; matrix Ly®, excluding the elements
used for the normalization of the modeshapes (which are
fixed at unity); thus, a total of N,(N, — 1) unknown mode-
shape parameters are to be identified; (3) the elements of the
upper right triangular part of the N, X N,, submatrix of
Sy corresponding to the N,, considered modes (symmetry
defines the lower triangular part); (4) the elements of the
upper right triangular part of 3, (again, symmetry defines
the lower triangular part of this matrix).

Recall that the scaling of each modeshape is chosen such
that one of its components corresponding to a measured
DOF is equal to unity. However, such scaling is arbitrary.
Thus, the above vectors can be identified only up to a
constant scaling factor. A different modeshape normaliza-
tion will cause all identified components of the rth mode-
shape to be scaled by some constant c,; at the same time, the
values of the elements S ;6’5) of the modal forcing spectral
density matrix will be scaled by (c,c,)” "

Let the vector Y,,, denote the response measurements
from time mAt to pAt (m =< p), that is,

Y,, =Ly m-y' @1,

Using Bayes’ theorem, the expression for the updated

m=p 1)
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PDF of the parameters a given some measured response
Yl,N is

p@|Y;y) = cop(@)p(Y; y|a) (22)

where ¢, is a normalizing constant such that the integral of
the right-hand side of Eq. (22) over the domain of a is equal
to unity. The term p(a) denotes the prior PDF of the para-
meters and is based on previous knowledge or engineering
judgement; in the case where no prior information is
available, this term is treated as a constant. The term
p(Y;yla) is the dominant term on the right-hand side of
Eq. (22) reflecting the contribution of the measured data
in establishing the updated distribution. This term can be
expanded into a product of conditional probabilities as
follows:

N
a) [ pola;Y ) (23)

k=N, +1

p(Yinl) = P(Yin,

In order to improve computational efficiency, the following
approximation is introduced:

N
a) [[ poy®la; Y,y (24

k=N, +1

p(Yinla) = p(Y,,

That is, the conditional probability terms depending on
more than N, previous data points are approximated by
conditional probabilities depending on only the last N,
data points. The sense of this approximation is that data
points belonging too far in the past do not have a significant
effect on the statistical behavior of a present point. Of
course, one expects that this is true when N, is so large
that all the correlation functions have decayed to very
small values. However, it will be shown with a numerical
example later in Section 3.1 that a significantly smaller
value of N, suffices for the approximation in Eq. (24) to
be valid for practical purposes. In particular, it is found
that a value for N, of the order of Ty/At is sufficient,
where T is the fundamental period of the system and Atz
the sampling time step. For example, assuming a time step
At = (1/25)T,, it follows that a value of N, = 25 is suffi-
cient. The advantage of the approximation in Eq. (24) will
become obvious later in this section once the expression for
the involved conditional probabilities is given.
The term p(Yl’Np|a) follows an N,N,-variate Gaussian
distribution with zero mean and covariance matrix Ey,Np:
A o Ay

Syn, =El nYiyl=| + - (25)

Ay - Ayw

P p*t¥p

where each of the matrices A, ,, 1 =m, p=N,, has

dimension NgX N,. The (j, I) element of the matrix

A,,, is given by
AYD = Ely,(t + mAny(t + pAp)]

= 3 LYLPRYIp — mAd + 3908, (26)

rs=1

where §,,, is the Kronecker delta function, R the (r, s)
element of the auto-correlation function R (#) of the model
response x(f) given by Eq. (18), and Z,(lj D is the (j, ) element
of the noise covariance matrix defined in Eq. (20). It is worth
noting that all matrices A,,, , with the same value of (m — p) are
identical and that A3} = A{:)).
Thus, the joint probability distribution p(Y,,Np|a) is given
by
1

QN3

p(Yiy,l2)

1 _
| 72 exp(— 2 Y{Nﬁ 3 Y,}VI,YI,N,, )
NF

27)

Next, we derive the general expression for the conditional
probability of y(k) given a previous points p(y(k)a;
Y;_qx—1), where it is assumed that k> « = 1. Note that
the terms in the product of the right-hand side of Eq. (24)
correspond to the special case « = N,. For notation simpli-
city in the later formulation, we introduce the vector Z(k) =
(k) yTtk — 1D)-yT(k — a)' € 2V*D. Note that Z(k)
is comprised of the same elements as the vector Y,_,, in
Eq. (21) but with the elements placed in reverse order. It can
be calculated as follows:

y(k) ]
(28)

Bakaa,kf 1

Z(k) =B, Yi—ar = [

where the matrix B, is given by

DYy - D
B, = : : (29)
Dyl - DL,

with each of the matrices Dg,ffg,, m,p = 1, ..., o, of dimension
N; X N given by

D5 = Ly 8y p et (30)

where Iy denotes the identity matrix of dimension N, X N;
and 6m+1;,a+1 the Kronecker delta function. Since both the
model response x and the prediction error n are zero-mean
Gaussian processes, it follows from Eq. (19) that y is also a
zero-mean Gaussian process. The covariance matrix 2, of
the random vector Z(k) is given by

AT, AT
3, = E[Z(Z" (k)] = : : (31)
AZ+1,1 A£+l,u¢+l

where each of the matrices Am,[,, l=m,p=a + 1,is given
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Fig. 1. Measured response (displ.) time history (Example 1).

by Eq. (26). Note that we take transpose of each of the
matrices Am,,,, 1=m, p=a + 1 because the time order
of the response vector was reversed.

Next, we partition the matrix 3, as follows:

In 2
a [ Lox ]
12 2
where 3,;, 2, and 3, have dimensions N, X N,, N, X N,
a and Nya X Ny, respectively. Since the measured
response is assumed to have zero mean, the mean e, (k) of
y(k) given Y;_, ;- (k> a) is given according to Ref. [24]
by

eo(k) = E[y(0)| Y- as—11= 21222 BaYi—ai1

(32)

(33)

and the covariance matrix 2 ,(k) of the prediction error
€,(k) = y(k) — e, (k) given Y;_,,—; is given by

— 3305

It is worth noting that % (k) is independent of the value of
k. That is, % ,(k) = %_,. In conclusion, the conditional
probability p(y(k)|a; Y;_,,—1) follows an N-variate
Gaussian distribution with mean e, (k) given by Eq. (33)
and covariance matrix X, given by Eq. (34), that is,

1
QNS |

3 olk) = Eleg(beq(k)] = 3 (34)

pyK)|a; Yy 1) =
(35)

1 -
X exp{— 7 V) — e X calyh) - ea<k>]}

The proposed modal updating approach can be

summarized as follows: We use Eq. (22) with p(Y1,N|a)
being calculated through the approximation in Eq. (24).
The term p(Yl,Np|a) in Eq. (24) can be calculated using
Eq. (27) along with Egs. (25) and (26) and each of the
remaining conditional probability terms in approximation
(24) can be calculated with the help of Eq. (35) along
with Eqgs. (29)-(34).

One of the advantages of the approximation introduced in
Eq. (24) is that all the conditional probability terms on the
right-hand side are conditional on exactly N, previous
points. Thus, they follow an N-variate Gaussian distribution
with the same covariance matrix Ee,N,, which, therefore,
needs to be calculated only once. Also, the matrix
21222}1 in Eq. (33) for calculating the mean value of
each of these distributions needs to be calculated only
once for all these terms. Another major advantage is that
one needs to calculate the inverse and determinant only
for the matrices %yy 2 and Xy, of dimension
NN, X NN, NN, X NN, and N X N, respectively. This
effort is negligible compared to the effort required in an
exact formulation where one needs to calculate the inverse
and the determinant of a matrix of dimension NN X NN
(where generally N > N,).

The most probable parameters 4, also referred to as ‘opti-
mal’, are obtained by minimizing g(a) = —In[p(a]Y y)]. It
is found that the updated PDF of the parameters a can be
well approximated by a Gaussian distribution N(a, H !(a))
with mean & and covariance matrix H™'(a), where H()
denotes the Hessian of g(a) calculated at a = a.

Although the above formulation was presented for the
case where the measured response is assumed to consist
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Fig. 2. Auto-correlation function R,, mean predictive response e,, and standard deviation of the predition error o, , (Af = 0.1 sec) (Example 1).

of displacement histories, it can be easily modified to treat
velocity or acceleration measurements. In such a case, one
must simply employ in the right-hand side of Eq. (17) the
corresponding expressions for velocity or acceleration.
Also, note that in the case of accelerations, one must assume
band limited white noise in order to achieve bounded auto-
correlation functions.

Note that in both the Kalman filter method and in the
proposed approach, the response at a given time kAt is
estimated using previous response measurements. However,
in contrast to the Kalman Filter where the estimation is
based on all available previous response measurements,
the proposed approach utilizes only a limited number of
the most recent N, previous measurements. Moreover, in
the case of Kalman filter, the estimators are calculated in
a recursive manner; specifically, the predictor at time kAt
can be calculated only after the predictor at time (k — 1)At
becomes available. However, in the proposed approach, the
predictor at any time kAt can be calculated directly from the
last N, measurements without the need to pre-calculate

Table 1
Identification results using one set of response data (Example 1)

Parameter Actuala Optimald SD.ofc a=o0/a B=Ia— 4o

[N 3.0000  3.0052 0.0079 0.0026  0.6599
{ 0.0200  0.0203 0.0027 0.1342  0.0945
Sp 5.0000  4.8413 0.1598 0.0320  0.9934
ol 0.1381 0.1396 0.0025 0.0183  0.6182

the predictor at any previous time. This allows for a compu-
tationally very efficient implementation of the proposed
method when parallel computing is available.

3. Numerical examples
3.1. Example 1 (SDOF)

In this example, we consider the identification of an
SDOF system from simulated noisy displacement response
data. The parameters a = [@, ¢, S’fo, 6'3 IR used to generate
the simulated data are: @, =3rad/s, { =0.02, S =
5cm? s> and 6',% = 0.1381 cm?. The chosen value of 6',%
corresponds to a 10% prediction error level, i.e. the rms of
the noise is 10% of the rms of the noise-free response. The
sampling time step is Ar = 0.1 s, and the total time interval
is T = 1000 s, i.e. N = 10000. In both Examples 1 and 2, a
noninformative prior distribution p(a) is assumed.

Fig. 1 shows a typical simulated displacement time
history. Fig. 2 validates the approximation in Eq. (24).
The top plot shows the auto-correlation function R, (kAt|a)
corresponding to the target parameters plotted against k. The
mean e, (5001) calculated from Eq. (33) and the correspond-
ing standard deviation of the prediction error o , calculated
from Eq. (34) are shown in the middle and bottom plot,
respectively, as a function of the number of previous points
a considered. It can be clearly seen that for values of «
beyond approximately o = 10 (corresponding to only about
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at their optimal values (Example 1).

one half of a period of the oscillator), the predictive
response and its associated uncertainty stabilize. This
implies that increasing the value of N, beyond N, = 10 in
Eq. (24) will not further improve the quality of the identifi-
cation results. Thus, it is suggested that N, is chosen such
that it contains approximately one period of the oscillator. It
is worth noting that the value of N, at which stabilization
occurs is rather insensitive to the prediction error level (10%
in our case). If one uses a larger value of N, the incremental
improvement in the identification results will be insignifi-
cant but the computational effort will increase rapidly. The
low value of N, at which the values of e, and o , stabilize
is rather surprising, given that the auto-correlation function
is far from being decayed to small values. The computa-
tional efficiency of the presented algorithm is due to this low
value of N,,.

Table 1 refers to the identification results using the single
set of displacement measurements Y, ~ shown in F1g 1. It
shows the estimated optimal values a = [@,, { Sfo, 5 2] s

Table 2
Identification results using 500 sets of data and N, = 20 (Example 1)

Parameter Actual & Average of & S.D.of 4 Average of ¢ E[B7]

[N 3.0000  2.9997 0.0074 0.0079 0.9300
{ 0.0200  0.0205 0.0025 0.0027 0.9401
Sp 5.0000  4.9892 0.1602 0.1646 0.9857
ol 0.1454  0.1454 0.0026 0.0025 1.0147

the calculated standard deviations T w0 04 O, and Ty,
the coefficient of variation (COV) for each parameter
and the value of a ‘normalized distance’ B for each para-
meter. The parameter 3 represents the absolute value of the
difference between the identified optimal and target value,
normalized with respect to the corresponding calculated
standard deviation. Here, the value N,, = 20 (corresponding
to one period of the oscillator) was used in Eq. (24). Repeat-
ing the identification with a value of N, = 50 yielded iden-
tical results.

Fig. 3 shows contours in the (wq, {) plane of the condi-
tional updated joint PDF p(wo,§|Y1 N,Sfo, n) calculated
for the set of simulated data used in Table 1. Similarly,
Fig. 4 shows contours in the (£, Sfo) plane of the conditional
updated joint PDF p(¢, SfO|Y1 Ns Do, O ) calculated for the
same data. One observes that the damping ratio and the
spectral intensity are quite correlated, in contrast to g
and ¢ which (as seen from Fig. 3) can be considered as
being uncorrelated.

Flg 5 shows condltlonal PDFs p(w0|Y1 N> Z, Sfo, G ) and
p(§|Y1 Ns Do, Sfo, g ) obtained from: (i) Egs. (22) and (24)
(crosses) and (ii) the Gaussian approximation N(a, H™ (a))
described towards the end of Section 2.2 (solid line). It can
be seen that the proposed Gaussian approximation is very
accurate.

Next, 500 independent time history samples were
generated, using the same parameters as discussed in the
beginning of this example. The optimal parameters
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Fig. 6. Truss Model (Example 2).

A" m=1,...,500 using each set of data separately were
calculated. Then, the mean value and the covariance matrix
of the optimal parameters were calculated from the set
{ﬁ(m), m=1,...,500}. The obtained mean values and
standard deviations of the optimal parameters are shown in
the third and fourth columns, respectively, of Table 2. The
fifth column in this table shows the mean value of the 500
different standard deviations obtained by considering each of
the above sets of data separately. Finally, the values of the
second moments of the normalized distance parameter 3,
described earlier for Table 1, are shown in the last column.
It can be seen that the fourth and the fifth columns look
similar, implying that the uncertainties calculated from a
single sample are representative of the uncertainties of the
optimal parameters obtained from several independent sets
of data of equal length. Furthermore, the values in the last
column are all approximately equal to unity. This confirms
that the calculated uncertainties from our proposed approach
using one set of data are reasonable and representative of the
true uncertainties in the identification process.

1
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3.2. Example 2: four-bay truss

The second example refers to the truss shown in Fig. 6
where it is assumed that the displacements at the 8th, 12th
and 15th DOFs were measured over a time interval 7 = 2 s,
using a sampling interval At = 1/2000 s. The structure is
assumed to be excited at all 16 DOFs with independent
band-limited Gaussian white noise. The length of all the
horizontal and vertical members is equal to 0.5 m. All
members have the same cross-sectional area A =
0.0004 m?. The mass density is p = 7860 kg/m® and the
modulus of elasticity is E = 200 GPa. The first three
modal frequencies are 87.2843, 299.2266 and
430.7872 Hz. The damping ratios are chosen to be 2%
for all modes. The force excitations at the different
DOFs are chosen to have identical spectral intensities
equal to 1.0X 10°N*s. The prediction error level is
assumed to be 20%, i.e. the rms of the prediction error for
a particular channel of measurement is equal to 20% of the
rms of the noise-free response at the corresponding DOF.
Identification using the proposed approach is carried out for
the following four cases:

Case 1. Only response measurements from the 8th DOF
are used to identify the lowest two modes.

Case 2. Only response measurements from the 12th DOF
are used to identify the lowest two modes.

Case 3. Response measurements from the 8th and 15th
DOFs are used to identify the lowest two modes.

-2

(a) 8" DOF

10 . 10°

(b) 12t" DOF

(c) 15" DOF

T 10

_g

s s 10
0 200 400 600 0
o (Hz)

200

o (Hz)

) 10 )
400 200 400

o (Hz)

600

600 0

Fig. 7. Displacement spectral density for the 8", 12™ and 15" DOF (Example 2).
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Table 3

Identification results for Case 1 (Example 2)
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Parameter Actual a Optimal 4 S.D. of o COV « B=|a—alo
w; 87.2843 87.6616 0.4179 0.0048 0.9029
w, 299.2266 298.3806 0.9757 0.0033 0.8671
e 0.0200 0.0216 0.0048 0.2378 0.3361
I 0.0200 0.0238 0.0036 0.1783 1.0571
S 727.0104 712.1315 487471 0.0671 0.3052
Yo —0.1702 0.1566 0.1479 0.8692 2.2089
s 1812.6129 1931.1583 231.3648 0.1276 0.5124
a? 0.0130x 107* 0.0165% 107° 0.0005% 1072 0.0376 7.0847

Case 4. Response measurements from the 8th and 15th
DOFs are used to identify the lowest three modes.

In all cases, a value of N, = 25 was used which corre-
sponds to data points covering just over one fundamental
period.

Fig. 7a—c shows the auto-spectral density function corre-
sponding to the 8th, 12th and 15th DOF, respectively,
obtained from one set of data. One can see that the
frequency content differs from one DOF to another. There-
fore, one expects that the identification results obtained
using measurements from different DOFs will vary.

Tables 3—6 show the identification results for Cases 1-4,
respectively. The second column in these tables corresponds
to the actual values used for generation of the simulated
measurement data; the third and fourth columns correspond
to the identified optimal parameters and the corresponding
standard deviations, respectively; the fifth column lists the
COV for each parameter; and the last column shows the
normalized distance parameter B described in Example 1.
The first group of rows in each table corresponds to modal
frequencies, the next to modal damping ratios, the next to
the corresponding modeshape components (Cases 3 and 4),
the next to elements of the modal forcing spectral matrix
S0, and the last to elements of the prediction error
covariance matrix X,. The off-diagonal elements of the
matrix Sy, are here presented as coherence parameters

Table 4
Identification results for Case 2 (Example 2)

v = SIS S Note that in Cases 1, 3 and 4, the
normalization of the modeshapes is such that the modeshape
component at the 8th DOF is equal to unity for each of the
modes considered. In contrast, the normalization of the
modeshapes in Case 2 was done with respect to the 12th
DOF. Therefore, direct comparison of the values of the
elements of S ;( for Case 2 and the corresponding values
for any of the other cases is meaningless.

It is worth noting that in all cases the COV for the frequen-
cies are smaller than those for the damping ratios, indicating
that frequencies are identified better than dampings. An addi-
tional result observed, but not tabulated, is that the modal
damping ratios were found to exhibit significant correlation
with the corresponding modal forcing spectral intensities.

The calculated uncertainties shown in the above tables
are in accordance with our expectations. For example, the
standard deviation of w; in Case 1 is similar to its value in
Case 2 which is not surprising if one observes from Fig. 7
that the first modes in both cases are of similar magnitude.
However, the standard deviation of w, in Case 2 is more
than six times its value in Case 1 which is also not surprising
if one observes from Fig. 7 that the second mode does not
show up as strongly at the 12th DOF (Case 2) as it does at
the 8th DOF (Case 1).

Note that the use of additional channels usually improves
the identification results, i.e. it usually reduces the uncer-
tainties of the identified modal parameters. For example,

Parameter Actual a Optimal & S.D.of & COV «a B=la—alo
o 87.2843 87.4633 0.4056 0.0046 0.4414
w0, 299.2266 303.1618 6.8132 0.0228 0.5776
¢ 0.0200 0.0215 0.0047 0.2368 0.3069
I 0.0200 0.0086 0.0266 1.3276 0.4291
S 2042.7711 1984.5913 126.4076 0.0619 0.4603
Yo —0.1702 0.0838 13818 8.1189 0.1838
s 39.0641 24.9088 90.0589 2.3054 0.1572
o2 0.0340x 107* 0.0383x107° 0.0010x 1073 0.0305 4.1509
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Table 5
Identification results for Case 3 (Example 2)

Parameter Actual a Optimal 4 S.D.of & COV « B=|a—alo
o, 87.2843 87.2905 0.4083 0.0047 0.0152
@, 299.2266 299.7950 0.8479 0.0028 0.6704
4 0.0200 0.0207 0.0047 0.2325 0.1597
e 0.0200 0.0207 0.0029 0.1453 0.2260
w 0.1976 0.1956 0.0034 0.0173 0.6119
&2 —0.6276 —0.6418 0.0194 0.0309 0.7296
Sie" 727.0104 704.6307 45.8801 0.0631 0.4878
%e” —0.1702 —0.5602 0.1291 0.7586 3.0204
S 1812.6129 1647.7563 155.1697 0.0856 1.0624
IS 0.0130x 1073 0.0164x 107> 0.0004 % 1073 0.0345 7.5705
342 5D 322 0 0.2070 0.0178 Inf 11.5990
3@ 0.0012x 107 0.0130x 1073 0.0003x 1073 0.2544 37.2781

comparing the tabulated results for Cases 1 and 3 one sees
that the uncertainties in the modal frequencies and damp-
ings of the first two modes in Case 3 are smaller than those
in Case 1. It is likely, however, that placement of the second
sensor at a different DOF can further reduce the uncertain-
ties of the frequencies. A rational procedure for selecting the
optimal locations has been developed [25,26]. It is based on
using a statistical approach for modal updating, such as the
one proposed herein, and involves the minimization of the
information entropy of the estimated parameters which is a
unique measure of their uncertainty.

Comparing Table 5 (Case 3) and Table 6 (Case 4), one
sees that the consideration of the higher (third) mode does
not have any substantial impact on the values of the optimal

Table 6
Identification results for Case 4 (Example 2)

parameters and the standard deviations of the two lower
modes. However, it can be observed that in both cases the
identified values for the covariance of the prediction error
are always larger than the theoretical values. This is because
while all 16 modes contribute to the structural response, the
identification has been restricted to a small number of the
lower modes. The contribution of the higher modes on
the lower frequency range has the effect of an equivalent
artificial noise which causes the identified mean values of
the prediction error covariance to be larger than the actual
values used in the simulations. As we consider more modes,
these errors become smaller, and the estimates of the predic-
tion error covariance approach the theoretical values. The
improvement as more modes are considered can be seen by

Parameter Actual a Optimal 4 S.D. of & COV « B=|a—alo
o, 87.2843 87.6587 0.4107 0.0047 0.9117
w, 299.2266 298.4979 0.8122 0.0027 0.8972
ws 430.7872 431.9040 1.0089 0.0023 1.1070
Ie 0.0200 0.0207 0.0047 0.2326 0.1601
& 0.0200 0.0192 0.0027 0.1349 0.2834
& 0.0200 0.0177 0.0024 0.1191 0.9540
@ 0.1976 0.1967 0.0026 0.0130 0.3550
&2 —0.6276 -0.6299 0.0144 0.0229 0.1599
&Y 3.5313 3.0264 0.2541 0.0720 1.9866
Sie" 727.0104 705.8729 46.6130 0.0641 0.4535
Yo —0.1702 —0.0399 0.1111 0.6526 1.1731
%" —0.0303 0.6190 0.2072 6.8485 3.1334
s 1812.6129 1534.4846 132.4609 0.0731 2.0997
v —0.0247 0.2047 0.0938 3.7980 2.4461
s 178.4726 177.6544 33.4678 0.1875 0.0244
s 0.0130% 1073 0.0157x 1073 0.0004x 1073 0.0346 5.9909
33D 322 0 0.0305 0.0206 Inf 1.4811
322 0.0012x 1073 0.0059 % 1073 0.0002x 1073 0.1396 26.8422
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Fig. 8. Conditional PDFs of w; and w, for Case 1 calculated from: w, (i) Egs. (22) and (24) - cross; and (ii) Gaussian approximations - solid. The remaining

parameters are fixed at their optimal values (Example 2).
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Fig. 9. Conditional updated joint PDF of natural frequencies w; and w, for Cases 1-4 (Example 2).



K.-V. Yuen, L.S. Katafygiotis / Probabilistic Engineering Mechanics 16 (2001) 219-231 231

comparing Tables 5 and 6. Although in both Tables some of
the identified elements of the prediction error covariance are
far from the corresponding actual values, these discrepancies
are relatively smaller in Case 4 (Table 6). It can be concluded
that as more modes are considered this phenomenon of over-
estimating the prediction error starts correcting itself.

Fig. 8 is a typical plot for Case 1 which shows conditional
PDFs of w; and w, (keeping all other parameters fixed at
their optimal values) obtained from: (i) Egs. (22) and (24)
(crosses) and (ii) the Gaussian approximation N(a, H !(a))
described at the end of Section 2.2 (solid line). It can be seen
that the proposed Gaussian approximation is very accurate.

Fig. 9a—d correspond to Cases 1-4, respectively, and
show the contours in the (w;, w,) plane of the conditional
updated joint PDF of w; and w, (keeping all other para-
meters fixed at their optimal values). One observes that in
all cases the actual parameters are at a reasonable distance
(measured in terms of the estimated standard deviations)
from the identified optimal parameters. This, again,
confirms that the calculated uncertainties are reasonable.

4. Concluding remarks

A Bayesian time—domain approach based on an approx-
imate conditional probability expansion for updating the
PDF of the modal parameters of a linear MDOF system
using ambient data was presented. The updated PDF can
be accurately approximated by a multi-variate Gaussian
distribution. The calculated mean and covariance matrix
of this distribution offer an estimate of the optimal values
of the modal parameters and the uncertainties associated
with these values. Calculation of the uncertainties of the
identified modal parameters is very important if one plans
to proceed in a subsequent step with the updating of a theo-
retical finite-element model.

The presented methodology processes simultaneously the
response histories at all measured DOFs. Only one set of
response time histories is required. The approach proceeds
without any difficulty using directly the noisy measurement
data. The calculation of the uncertainties does not require
calculating several optimal values from a number of data
sets and then calculating the statistics of these optimal
estimates. Instead, it follows directly from the processing
of a unique set of measurements. Note that the proposed
methodology can be applied to the case of non-white
stationary input by simply modifying Eqs. (11), (17) and
(18) accordingly.
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