
Journal of Computational Physics 323 (2016) 204–218
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A fast accurate approximation method with multigrid solver

for two-dimensional fractional sub-diffusion equation ✩

Xue-lei Lin a, Xin Lu a, Micheal K. Ng b, Hai-Wei Sun a,∗
a Department of Mathematics, University of Macau, Macao
b Department of Mathematics, Hong Kong Baptist University, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 May 2016
Received in revised form 21 July 2016
Accepted 23 July 2016
Available online 27 July 2016

Keywords:
Block lower triangular Toeplitz matrix
Block ε-circulant approximation
Multigrid method
Fractional sub-diffusion equations

A fast accurate approximation method with multigrid solver is proposed to solve a two-
dimensional fractional sub-diffusion equation. Using the finite difference discretization of
fractional time derivative, a block lower triangular Toeplitz matrix is obtained where each
main diagonal block contains a two-dimensional matrix for the Laplacian operator. Our idea
is to make use of the block ε-circulant approximation via fast Fourier transforms, so that
the resulting task is to solve a block diagonal system, where each diagonal block matrix is
the sum of a complex scalar times the identity matrix and a Laplacian matrix. We show
that the accuracy of the approximation scheme is of O (ε). Because of the special diagonal
block structure, we employ the multigrid method to solve the resulting linear systems.
The convergence of the multigrid method is studied. Numerical examples are presented
to illustrate the accuracy of the proposed approximation scheme and the efficiency of the
proposed solver.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Consider an initial-boundary value problem of two-dimensional fractional sub-diffusion equation (FSDE) [5,24]:

C
0D

α
t u = ∇·(p(x, y)∇u) + f (x, y, t), (x, y) ∈ Ω, 0 ≤ t ≤ T , (1.1)

u(x, y, t) = φ(x, y, t), (x, y) ∈ ∂Ω, 0 ≤ t ≤ T , (1.2)

u(x, y,0) = ψ(x, y), (x, y) ∈ Ω̄ = Ω ∪ ∂Ω, (1.3)

where Ω = (xL, xR) × (yL, yR) is a rectangular domain, ∇·(p(x, y)∇u) is the elliptic operator, p(x, y) is a smooth positive
function such that ∀(x, y) ∈ Ω , p(x, y) ≥ p0 > 0 with p0 being a constant, ∂Ω is the boundary, f (x, y, t) is the source term,
C
0 Dα

t u is the Caputo’s derivative of order α (0 < α < 1) with respect to t defined by

C
0D

α
t u(x, y, t) = 1

�(1 − α)

t∫
0

∂u(x, y, s)

∂s
(t − s)−αds, (1.4)

✩ This research was supported by research grants MYRG2016-00063-FST from University of Macau, 054/2015/A2 from FDCT of Macao, HKRGC GRF
HKBU12301214 and HKBY FRG grant.

* Corresponding author.
E-mail address: HSun@umac.mo (H.-W. Sun).
http://dx.doi.org/10.1016/j.jcp.2016.07.031
0021-9991/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2016.07.031
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:HSun@umac.mo
http://dx.doi.org/10.1016/j.jcp.2016.07.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2016.07.031&domain=pdf

X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218 205
with �(x) denoting the gamma function, φ(x, y, t) and ψ(x, y) are the given Dirichlet boundary condition and initial condi-
tion, respectively.

The FSDE is a class of fractional differential equation, which has been widely and successfully used in modeling of
description of fractional random walk, anomalous diffusive systems, unification of diffusion and wave propagation phe-
nomenon; see [1,4,12,17–19]. Since analytical solutions to FSDEs are often unavailable, many numerical schemes are pro-
posed for solving sub-diffusion problems (see [5–7,21,22,24,25]). The fractional differential operators are nonlocal, which
leads to a character of history dependence and universal mutuality (see [24]). Hence, the computational cost is too expen-
sive for solving the discrete problems obtained from the FSDE. This motivates us to develop fast algorithm for numerical
schemes. More precisely, the associated coefficient matrix having N × N blocks is usually of block lower triangular Toeplitz
(BLTT) structure with each block being of size M2 × M2 when certain numerical scheme is applied on the FSDE (1.1)–(1.3). In
general, direct solvers for the BLTT linear system are often time consuming. For example, block forward substitution method
[8] as a direct solver requires at least O(N2 M2 + N M4) operations. When N or M is large, the number of operations for
direct solvers becomes very large. Therefore, direct solvers may not be considered when the matrix size is large.

Block forward substitution method combined with some efficient iterative solvers for BLTT linear systems may reduce
the complexity to O(N2M2) operations and only require O(N M2) storage. Alternatively, Zhang and Sun in [24] proposed
the alternating direction implicit schemes for solving high dimensional FSDE whose resulting BLTT linear system can be
directly solved with O(N2 M2) operations and O(N M2) storage requirement. Nevertheless, their method is only available
for p(x, y) being a constant. Meanwhile, it has lower temporal accuracy compared with the non-ADI scheme. Even so, both
of the above mentioned methods are still expensive, when N is large.

In order to reduce the computational cost, recently, Lu, Pang and Sun [15] proposed an approximate inversion method
(AIM) for solving BLTT linear systems, which can be applied to the one dimensional FSDEs. More precisely, the corresponding
BLTT matrix is firstly approximated by the block ε-circulant matrix [3,14], which can be block diagonalized via fast Fourier
transform (FFT). Each block is a tri-diagonal matrix for the one dimensional case. Therefore, they can be inverted easily. The
accuracy of the approximation scheme is shown to be of O (ε) under some sufficient conditions.

In this paper, we extend the AIM to solve the two-dimensional case. As in [15], the resulting discretized BLTT matrix is
approximated by the block ε-circulant matrix via the FFT. Unlike that in [15], however, each block is no longer a tri-diagonal
matrix since it is from the two dimensional problem. Indeed, to the two dimensional case, after block diagonalizing by the
FFT, the resulting diagonal block matrix is the sum of a complex scalar times the identity matrix and a Laplacian matrix.
Therefore, it would be extensive to invert it directly. To lower the computational workload, we propose to exploit the
multigrid method (MGM) to solve the complex scalar shifted Laplacian linear systems, and establish the convergence of the
corresponding multigrid solver. We also investigate the resulting BLTT matrix to satisfy the condition which can guarantee
the accuracy of approximation to be of O (ε).

The proposed algorithm consists of two parts. The first part is for block diagonalization. The second part is for multigrid
solvers. The computational cost is of O(M2 N log N) operations and the storage cost is of O(N M2) storage, respectively.
Numerical examples are presented to illustrate the accuracy of the proposed approximation scheme and the efficiency of
the proposed multigrid solver.

The rest of this paper is organized as follows. In Section 2, we propose the approximation method for solving (1.1)–(1.3)
and study the accuracy of the method. In Section 3, we use the multigrid method for solving linear systems generated by
the approximation method, and analyze the convergence of MGM. In Section 4, experimental results are presented to show
the accuracy and efficiency of the proposed method. Finally, some concluding remarks are given in Section 5.

2. The approximation method

In this section, we propose the AIM for solving (1.1)–(1.3) and give a sufficient condition to guarantee a high accuracy of
the AIM.

For a positive integer N , let τ = T /N , tn = nτ (0 ≤ n ≤ N). Define the time-grid {tn|0 ≤ n ≤ N} for discretization of
[0, T], {un = u(·, tn)|0 ≤ n ≤ N}. For a given function w(t) defined on t ∈ [0, T], define grid function {wn = w(tn)|0 ≤ n ≤ N}.
Without loss of generality, we assume the approximation to C0 Dα

t w|t=tn to be

C
0D

α
t w|t=tn ≈ Dα

τ wn :=
n∑

i=1

g(α)
n−i wi + g(n,α)w0, 1 ≤ n ≤ N, (2.1)

where g(α)
i (i = 0, 1, ..., N), g(i,α) (i = 1, ..., N) are constants dependent on α, i, and N , which vary in different finite

difference schemes. We denote by B ∈ R
M2×M2

, the discretization of the elliptic operator −∇·(p(x, y)∇u). We assume that
there are M2 spatial unknowns to be determined. Applying (2.1) and B to the FSDE (1.1)–(1.3), we obtain a BLTT linear
system as follows:

Au = b, (2.2)

where u = (u1, u2, ..., uN) is the unknown to be solved, b is a given vector containing information about f , φ and ψ on
grid points,

206 X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218
A = TN ⊗ IM2 + IN ⊗
(

g(α)
0 IM2 + B

)
,

where Ik denotes the k × k identity matrix, TN is a lower triangular Toeplitz with its first column being
(
0, g(α)

1 , g(α)
2 , ...,

g(α)
N−1

)T
, “⊗” denotes the Kronecker product.

Let ε be a small positive number. The BLTT matrix A can be approximated by [15]

Aε = A + εT̃N ⊗ IM2 , (2.3)

where T̃N is an upper triangular Toeplitz matrix with its first row being (0, g(α)
N−1, g

(α)
N−2, ..., g

(α)
1). It is interesting to point

out that Aε is called a block ε-circulant matrix.
Let Dδ = diag(1, δ, ..., δN−1) with δ = N

√
ε; the N × N Fourier transformation matrix be given by

FN = 1√
N

[
ω(i−1)(j−1)

]N

i, j=1
, ω = exp(

2π i

N
), i ≡ √−1.

We note that the block ε-circulant matrix Aε can be block diagonalized by means of a combination of FN and Dδ as
following [15]

Aε =
[
(D−1

δ F∗
N) ⊗ IM2

]
diag (�0,�1, . . . ,�N−1)

[
(FN Dδ) ⊗ IM2

]
, (2.4)

where

�k = B +
⎛
⎝N−1∑

j=0

δ j g(α)
j ωkj

⎞
⎠ IM2 , k = 0,1, . . . , N − 1. (2.5)

From (2.3) and (2.4), we obtain

uε = A−1
ε b =

[
(D−1

δ F∗
N) ⊗ IM2

]
diag

(
�−1

0 ,�−1
1 , . . . ,�−1

N−1

)[
(FN Dδ) ⊗ IM2

]
b (2.6)

as an approximation to u by replacing A in (2.2) with Aε , where the nonsingularity of Aε is guaranteed by Theorem 1.
In order to measure how well the approximation uε is to u, the exact solution of (2.2), we refer to theoretical results in

[15] which are stated as following.

Theorem 1. (See [15, Corollary 10]) Assume

g(α)
0 ≥

N−1∑
j=1

∣∣∣g(α)
j

∣∣∣ , max
1≤ j≤N−1

g(α)
j ≤ 0, (2.7)

B is a nonsingular M-matrix, (2.8)

where definition of the terminology “nonsingular M-matrix” is given in [15]. Then,

i) the block ε-circulant matrix Aε is invertible for 0 < ε < 1; and
ii) there exists a nonnegative constant c depending only on A such that∥∥A−1

ε − A−1
∥∥∞∥∥A−1

∥∥∞
≤ [1 + c(1 + ε)]ε = O(ε),

iii) if u is a nonzero vector, then

||u − uε ||∞
||u||∞ ≤ ε[1 + c(1 + ε)]κ(A),

where κ(A) = ||A−1||∞||A||∞ denotes the condition number of A.

Remark. Theorem 1 shows that if the assumptions (2.7)–(2.8) hold and the condition number κ(A) is not too big, uε is a
good approximation to u whenever ε is small enough. Indeed, the assumption (2.7) is valid for two most popular difference
schemes. One is L1 approximation (see [24]). The other is L2-1σ approximation (see [2]). Moreover, the assumption (2.8)
is valid for a number of numerical methods; for examples, central difference discretizations on nonuniform grids, high
order finite difference methods [9,16], finite element methods [11,20], and high order compact difference schemes [13,
23]. Furthermore, the assumptions (2.7) and (2.8) imply the invertibility of A, hence the AIM for solving (1.1)–(1.3) makes
sense. In the rest of this paper, we always assume that (2.7) and (2.8) hold. On the other hand, theoretically, the condition

X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218 207
number κ(A) in iii) of Theorem 1 may depend on the size of A and which discretization scheme is applied. However,
numerical results in Section 4 show that uε approximates u very well and the matrix size does not affect the accuracy of
the approximation.

The proposed algorithm for (2.6) can be written into the following four steps:

Step1 Compute b̃ = [(FN Dδ) ⊗ IM2

]
b, (2.9)

Step2 Compute �k for k = 0,1, ..., N − 1 by using (2.5), (2.10)

Step3 Solve �k−1ũk
ε = b̃k for ũk

ε, k = 1,2, ..., N, with b̃ =
(
(b̃1)T, (b̃2)T, ..., (b̃N)T

)T
, (2.11)

Step4 Compute uε =
[
(D−1

δ F∗
N) ⊗ IM2

]
ũε, with ũε =

(
(ũ1

ε)
T, (ũ2

ε)
T, ..., (ũN

ε)T
)T

. (2.12)

Rewrite b as b = (
(b1)T, (b2)T, ..., (bN)T

)T
with bk ∈ R

M2×1 (1 ≤ k ≤ N). It is easy to check that (2.9) and (2.12) are
equivalent to

b̃k+1 = 1√
N

N−1∑
j=0

δ jωkjb j+1, k = 0,1, ..., N − 1, (2.13)

uk+1
ε = D−1

δ√
N

N−1∑
j=0

ω−kjũ j+1
ε , k = 0,1, ..., N − 1, (2.14)

respectively, where uε = (
(u1

ε)
T, (u2

ε)
T, ..., (uN

ε)T
)T

. From (2.13), (2.5) and (2.14), we see that (2.9), (2.10) and (2.12) can be
implemented with O(N M2 log N) operations and O(N M2) storage requirement by using FFTs. Hence, (2.9)–(2.12) for solving
the FSDE (1.1)–(1.3) requires O(N M2 log N) + R(M, N) operations and O(N M2) + J (M, N) storage, where R(M, N) and
J (M, N) denote number of operations and storage required by (2.11), respectively. It is noticeable that

�̄k = B +
⎛
⎝N−1∑

j=0

δ jω−kj g(α)
j

⎞
⎠ IM2 = B +

⎛
⎝N−1∑

j=0

δ jω(N−k) j g(α)
j

⎞
⎠ IM2 = �N−k, 1 ≤ k ≤ N − 1,

¯̃bk+1 = 1√
N

N−1∑
j=0

δ jω−kjb j+1 = 1√
N

N−1∑
j=0

δ jω(N−k) jb j+1 = b̃N−k+1, 1 ≤ k ≤ N − 1.

That means ũk+1
ε is just complex conjugate of ũN−k+1

ε respectively for 1 ≤ k ≤ N − 1. Hence, we only need to solve first
half of the linear systems in (2.11), which significantly reduces R(M, N) and J (M, N). In the next section, we propose the
MGM to solve (2.11). And it is shown in Section 3 that both R(M, N) and J (M, N) are of O(N M2) by the MGM. Thus, we
in advance conclude that the AIM with the MGM (AIMGM) requires only O(N M2 log N) operations and O(N M2) storage for
solving (1.1)–(1.3).

3. The multigrid solver

In this section, we study the MGM to solve a sequence of linear systems

�k−1ũk
ε = b̃k, k = 0,1, ..., �N/2� + 1,

where �·� denotes the floor function. For simplicity, we neglect the subscripts and rewrite these linear systems as follows:

�x = y, (3.1)

where y denotes b̃k for some k. According to (2.5), � can be written as

� = B + γ IM2 , (3.2)

where γ denotes
N−1∑
j=0

δ j g(α)
j ωkj for some k. Since � is of size M2 × M2, � can be a huge matrix if M is large. Moreover,

� has complex diagonal entries. We may consider to solve iterative solvers by solving the normalized equations of (3.1)
or transforming (3.1) into a larger real linear system. The disadvantage is that the condition number of the corresponding
linear system may become larger which leads a slower convergence rate.

In this paper, we study the structure of � and note that � is a shifted discrete elliptic operator with complex shift γ .
Meanwhile,

208 X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218
�(γ) = 1

2
(γ + γ̄) =

N−1∑
j=0

δ j cos(
2πkj

N
)g(α)

j ≥ g(α)
0 −

N−1∑
j=1

∣∣∣g(α)
j

∣∣∣≥ 0, 0 ≤ k ≤ N − 1, (3.3)

where �(·) denotes real part of a complex number. That means condition number of � does not exceed that of B. We make
use of multigrid approach to solve the linear system in (3.1) directly.

We denote by IH
h , Ih

H and S , restriction operator, interpolation operator and smoother. Define a sequence of spatial
grids-size such that M2 < M3 < · · · < Ml = M , where Mi = 2i − 1 and M2 denotes that spatial grids-size at coarsest level.
Also, we denote by B(i) , B defined on the Mi × Mi spatial grids. Let �(i) = B(i) + γ IM2

i
. Then, one iteration of MGM is given

by

Algorithm 1 Single step of MGM(ν, q).

function uh =MGM(i, u0, fh, q)

if i == 2 then
uh = (�(i))−1fh ;
return uh ;

else
iterate uh = S (�(i), fh, uh) ν times with initial guess u0; %presmoothing
e = MGM(i − 1, 0, IH

h (fh − �(i)uh), q); % 0 denotes zero initial guess
if i > 3 then

for j = 2 : q
e = MGM(i − 1, e, IH

h (fh − �(i)uh), q);
end

end if
uh = uh + Ih

H e;%correction

iterate uh = S (�(i), fh, uh) ν times; %postsmoothing
return uh ;

end if
end

We furthermore define MGM(ν, q) iteration for solving the system (3.1) as follows:

Algorithm 2 MGM(ν, q) iteration.

Set : u(0) = 0; r(0) = y;
do

u(k) = MGM(l, u(k−1), y, q);
r(k) = y − �u(k); %compute current residual

until ||r(k) ||∞
||r(0) ||∞ < 10−8 %stopping criterion

Let us estimate the complexity of Algorithm 1 with different q and ν . We denote by J (M) and R(M), the amount of
memory and number of operations required in Algorithm 1 respectively. Let J i denotes the amount of memory required by
Algorithm 1 at level i (2 ≤ i ≤ l). Then, by Algorithm 1, we have

J i ≤ c1M2
i , i ≥ 3, J2 = c2, (3.4)

where c1 is a positive constant independent of l, i, ν , and q, c2 is the amount of memory required by Algorithm 1 at the
coarsest level. Moreover,

inf
i≥2

M2
i+1

M2
i

≥ inf
i≥2

(2i+1 − 2)2

(2i − 1)2
= 4. (3.5)

Hence, we by (3.4) and (3.5) have

J (M) =
l∑

i=2

J i ≤ c2 + c1

l∑
i=3

M2
i

≤ c2 + c1M2
l

l∑
i=3

(
1

4

)l−i

= c2 + 4(1 − 42−l)c1M2
l

3
≤ c2 + 4c1M2

l

3
= O(M2). (3.6)

(3.6) shows that Algorithm 1 requires amount of memory proportional to number of unknowns in (3.1) for any positive ν
and q.

We denote by Ri(ν, q) (i ≥ 2), the number of operations required by Algorithm 1 with M = Mi . Note also that ν times
of smoothing iteration at level i (i ≥ 3) requires at most c3νM2

i operations with c3 being independent of i, l, ν and q. By
Algorithm 1, it holds following recursive inequalities,

X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218 209
R2(ν,q) = c4, R3(ν,q) ≤ c3νN3 + R2(ν,q), Ri(ν,q) ≤ c3νM2
i + qRi−1(ν,q), i ≥ 4, (3.7)

where c4 is the number of operations required at the coarsest level in Algorithm 1. By (3.5) and (3.7),

R3(ν,q) ≤ c3νM2
l

4l−3
+ c4, Ri(ν,q) ≤ c3νM2

l

4l−i
+ qRi−1(ν,q), 4 ≤ i ≤ l. (3.8)

Then, it follows trivially from applying induction to (3.8) that

Rl(ν,q) ≤ ql−3c4 + c3νM2
l

l−3∑
i=0

(q

4

)i ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4c3νM2
l

4−q + ql−3c4, 1 ≤ q ≤ 3,

c3ν(l − 2)M2
l + ql−3c4, q = 4,

c3ν43−lql−2 M2
l

q−4 + ql−3c4, q ≥ 5,

for l ≥ 3. (3.9)

With (3.9), we finally have following theorem.

Theorem 2. Take 1 ≤ q ≤ 3. Then,

R(M) ≤ c5νM2,

where c5 = 4c3 + c4 is a constant.

Proof. It follows from (3.9) that

R(M) ≤
(

4c3νM2
l

4 − q
+ ql−3c4

)
=
(

4c3ν

4 − q
+ qlc4

M2
l q3

)
M2

l ≤
[

4c3ν

4 − q
+ 3lc4

(2l − 1)2q3

]
M2

l ≤ c5νM2,

which completes the proof. �
In the next subsection, we analyze the convergence of MGM for this special complex scalar shifted Laplacian linear

system. In particular, we consider and study central difference approximation to the elliptic operator.

3.1. The convergence analysis of two grid method

In this subsection, we first analyze the convergence of two grid method (TGM) [10].
We assume p(x, y) ≡ η for some positive constant η and define

IH
h = 1

16
J ⊗ J, Ih

H = 4(IH
h)T, J =

⎡
⎢⎢⎢⎣

1 2 1
1 2 1

. . .

1 2 1

⎤
⎥⎥⎥⎦ , (3.10)

B = blocktridiag[H,G,H], H = −ηh−2IM , G = μηh−2tridiag[−1,2,−1] + 2ηh−2IM , (3.11)

h = (yR − yL)/(M + 1), μ = (yR − yL)
2/(xR − xL)

2.

Denote G̃ = G + γ IM . Since B is defined, � is defined. Furthermore, we define S for (3.1) as the weighted block Jacobi
(WBJ) smoother:

xk+1 = S (�,y,xk) := Sxk + 1

2

(
IM ⊗ G̃−1

)
y, (3.12)

where S = IM2 − 1
2

(
IM ⊗ G̃−1

)
� denotes the iteration matrix of S , xk is an initial guess. Similar to (3.12), we can define

WBJ smoother for linear system with coefficient matrix �(i) and arbitrarily given right hand sides. Therefore, the iteration
matrix of TGM is given by [10]

T(ν) := SνKh
H Sν,

where Kh
H is the correction operator defined by

Kh
H = I − Ih

H�−1
H IH

h �,

with �H denoting � on coarse grid and I denoting the identity. Hereinafter, we make notations:

210 X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218
K = {1,2, ..., M}, K
r = {1,2, ..., M̄ − 1}, M̄ = (M + 1)/2, K

b = K
r ∪ {M̄},

θi = π i

M + 1
, i′ = M + 1 − i, j′ = M + 1 − j, ∀i, j ∈K.

Define two dimensional sine transform as

Q = 2

M + 1

[
sin(iθ j)

]M
i, j=1 ⊗ [sin(iθ j)

]M
i, j=1 .

For a complex vector

� = (ξ11, ..., ξM1, ξ12, ..., ξM2, ..., ξ1M , ..., ξMM)T ∈C
M2×1, (3.13)

where Cm×n is the set of all m × n complex matrices, define the permutation matrix P such that

P� := (�̂11, ..., �̂M̄1, �̂12, ..., �̂M̄2,, �̂1M̄ , ..., �̂M̄M̄)T ∈C
M2×1,

with

�̂i j = (ξi j, ξi j′ , ξi′ j, ξi′ j′), (i, j) ∈K
r ×K

r, �̂M̄ j = (ξM̄ j, ξM̄ j′), j ∈K
r

�̂iM̄ = (ξiM̄ , ξi′M̄), i ∈K
r, �̂M̄M̄ = ξM̄M̄ .

Lemma 3. S = Q̃TŜQ̃, where Q̃ = PQ and

Ŝ = diag
(

Ŝ11, ..., Ŝ M̄1, Ŝ12, ..., Ŝ M̄2,, Ŝ1M̄ , ..., Ŝ M̄M̄

)
,

with

Ŝi j = diag(ri j, ri j′ , ri′ j, ri′ j′), (i, j) ∈K
r ×K

r, Ŝ M̄ j = diag(rM̄ j, rM̄ j′), j ∈ K
r,

Ŝ iM̄ = diag(riM̄ , ri′M̄), i ∈ K
r, SM̄M̄ = rM̄M̄ ,

ri j = 1

2
+ cos θ j

4μ sin2(
θi
2) + γ ∗ + 2

, (i, j) ∈K×K, γ ∗ = η−1h2γ .

Proof. ∀e ∈C
M2×1, we denote ẽ = Se. Rewrite e and ẽ in the form of

e = [(e1)
T, (e2)

T, ..., (eM)T]T, ek = (e1k, e2k, ..., eMk)
T, k ∈ K,

ẽ = [(ẽ1)
T, (ẽ2)

T, ..., (ẽM)T]T, ẽk = (ẽ1k, ẽ2k, ..., ẽMk)
T, k ∈ K.

By (3.12), it holds that

G̃ẽl =

⎧⎪⎨
⎪⎩

0.5G̃e1 + 0.5ηh−2e2, l = 1,

0.5G̃el + 0.5ηh−2(el−1 + el+1), 1 < l < M,

0.5G̃eM + 0.5ηh−2eM−1, l = M.

(3.14)

Let � = 2
M+1 QTe be of the form in (3.13). By orthogonality of Q, e = M+1

2 Q�. We furthermore have

ekl =
∑

(i, j)∈K×K

ξi j sin(kθi) sin(lθ j), (k, l) ∈K×K. (3.15)

Expand ẽ in the similar form

ẽkl =
∑

(i, j)∈K×K

ξ̃i j sin(kθi) sin(lθ j), (k, l) ∈K×K. (3.16)

By (3.14), (3.15) and (3.16),∑
(i, j)∈K×K

δi ξ̃i j sin(kθi) sin(lθ j) =
∑

(i, j)∈K×K

ηi jξi j sin(kθi) sin(lθ j), k, l ∈K,

where

δi = 2ηh−2 + 4μηh−2 sin2(θi/2) + γ , ηi j = 0.5δi + ηh−2 cos θ j, i, j ∈K.

X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218 211
Hence,

ξ̃i j = δ−1
i ηi jξi j = ri jξi j, i, j ∈K. (3.17)

Combining (3.17) and (3.16), we obtain

Se = ẽ = M + 1

2
QPTŜP� = M + 1

2
QPTŜP

(
2

M + 1
QTe

)
= Q̃TŜQ̃e.

Taking e over all columns of identity matrix, the proof is complete. �
Lemma 4. (See [10, Theorem 8.1.4]) Let Q̃ be given by Lemma 3. Then, the correction operator Kh

H satisfies that

Kh
H = Q̃TK̂h

H Q̃ := Q̃Tdiag
(

K11, ..., K M̄1, K12, ..., K M̄2, ..., K1M̄ , ..., K M̄M̄

)
Q̃,

where

Kij = I4 − d̃−1
i j Îh

H (i, j) Î H
h (i, j)�(i j)

h , K M̄ j = KiM̄ = diag(1,1), i, j ∈K
r, K M̄M̄ = 1,

with

�
(i j)
h = diag(dij,dij′ ,di′ j,di′ j′), (i, j) ∈K

r ×K
r,

dij = 4(aαi + bα j) + γ , (i, j) ∈ (K \ {M̄}) × (K \ {M̄}),
d̃i j = 4(aαiβi + bα jβ j) + γ , (i, j) ∈K

r ×K
r,

Î H
h (i, j) = 1

2
[βiβ j,−βiα j,−αiβ j,αiα j], Îh

H (i, j) = 4
(

Î H
h (i, j)

)T
, i, j ∈K

r,

αi = sin2 (θi/2) , βi = cos2 (θi/2) , i ∈K, b = ηh−2, a = μb.

Lemma 3 and Lemma 4 show that S and Kh
H can be simultaneously block diagonalized by Q̃. Furthermore, we have

following theorem.

Theorem 5.

||T(ν)||2 ≤ C0

ν − 2
, ∀ν ≥ ν0, (3.18)

where

ν0 = μ + 1

2μ
+ 3

2
, C0 = max

{
4a1

(
μ + 1

2μ + 1

)a1+2

,a2

(
μ + 2

2μ + 2

)2a2+4

,2(μ−1 + 1)

}

a1 = ln−1 [(2μ + 1)/(μ + 1)] , a2 = ln−1 [(2μ + 2)/(μ + 2)]2 .

Proof. In this proof, we always assume ν ≥ ν0. By Lemma 3 and Lemma 4,

T(ν) = Q̃TŜν K̂h
H Ŝν Q̃.

Since Q̃ is also an unitary matrix, we by unitary invariance of 2-norm have

||T(ν)||2 = ||Ŝν K̂h
H Ŝν ||2 = max

i, j∈Kb
||Tij||2, Tij = Ŝν

i j Ki j Ŝν
i j, i, j ∈K

b. (3.19)

Hence, we only need to prove ||Tij ||2 ≤ C0(ν − 2)−1, ∀i, j ∈K
b . By straightforward calculation,

T M̄M̄ = r2ν
M̄M̄

, T M̄ j = diag(r2ν
M̄ j

, r2ν
M̄ j′), TiM̄ = diag(r2ν

iM̄
, r2ν

i′M̄), i, j ∈K
r .

Hence,

max

{
max
i∈Kb

||TiM̄ ||2,max
j∈Kr

||T M̄ j||2
}

≤
(

μ + 2

2μ + 2

)2ν

≤ C0

ν − 2
. (3.20)

Now, we consider estimation of ||Tij ||2 (i, j ∈ K
r). Let || · ||F denote Frobenius norm. Then, it suffices to show ||Tij ||F ≤

C0(ν − 2)−1 (i, j ∈K
r), since ||Tij ||2 ≤ ||Tij||F . We also denote by T̃ xy , Tij with x = αi, y = α j when i, j ∈K

r , i.e. T̃αiα j = Tij
for any i, j ∈K

r . Again, by straightforward calculation,

212 X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218
T̃ xy =

⎡
⎢⎢⎣

E0(x, y) E1(x, y) E2(x, y) E3(x, y)

E1(x, ỹ) E0(x, ỹ) E3(x, ỹ) E2(x, ỹ)

E2(x̃, y) E3(x̃, y) E0(x̃, y) E1(x̃, y)

E3(x̃, ỹ) E2(x̃, ỹ) E1(x̃, ỹ) E0(x̃, ỹ)

⎤
⎥⎥⎦

where

E0(x, y) = r2ν(x, y)
[

1 − x̃2 ỹ2 g(x, y)
]
, E1(x, y) = [r(x, y)r(x, ỹ)

]ν
x̃2 y ỹg(x, ỹ),

E2(x, y) = [r(x, y)r(x̃, y)
]ν

xx̃ ỹ2 g(x̃, y), E3(x, y) = [r(x, y)r(x̃, ỹ)]νxx̃y ỹg(x̃, ỹ),

r(x, y) = 2μx + 2−1γ ∗ + 2 ỹ

4μx + γ ∗ + 2
, g(x, y) = 4(ax + by) + γ

4
(
axx̃ + by ỹ

)+ γ
, x̃ = 1 − x, ỹ = 1 − y.

Note that

max
i, j∈Kr

||Tij||F ≤ sup
x,y∈(0,1)

||T̃ x,y||F ≤ 2

√√√√ 3∑
i=0

sup
x,y∈(0,1)

|Ei(x, y)|2.

Hence, it suffices to show

sup
x,y∈(0,1)

|Ei(x, y)| ≤ C0

4(ν − 2)
, ∀i ∈ {0,1,2,3}.

We recall that both γ and γ ∗ have nonnegative real parts, which will be frequently used in this proof.

sup
x,y∈(0,1)

|E0(x, y)| = sup
x,y∈(0,1)

|r(x, y)|2ν

∣∣∣∣4axx̃(1 − x̃ ỹ2) + 4by ỹ(1 − x̃2 ỹ) + γ (1 − x̃2 ỹ2)

4(axx̃ + by ỹ) + γ

∣∣∣∣
≤ sup

x,y∈(0,1)

(1 − x̃2 ỹ2)|r(x, y)|2ν

≤ sup
x∈(0,1)

{
sup

y∈[0.5,1)

|r(x, y)|2ν , sup
y∈(0,0.5]

|r(x, y)|2ν
[

1 − x̃2 ỹ2
]}

≤ max

{
1

22ν
, sup

x∈(0,1)

sup
y∈(0,0.5]

|r(x, y)|2ν
[

1 − x̃2 ỹ2
]}

. (3.21)

Since 1 − x̃2 ỹ2 = (1 − x̃ ỹ)(1 + x̃ ỹ) ≤ 2(x + y),

sup
x∈(0,1)

sup
y∈(0,0.5]

|r(x, y)|2ν
[

1 − x̃2 ỹ2
]

≤ 2 sup
x∈(0,1)

sup
y∈(0,0.5]

|r(x, y)|2ν (x + y)

≤ 2

[
sup

x∈(0,1)

(
μx + 1

2μx + 1

)2ν

x + sup
y∈(0,0.5]

(1 − y)2ν y

]
. (3.22)

By solving
[
(1 − y)2ν y

]′ = 0, it is easy to find that

max
y∈[0,0.5](1 − y)2ν y =

(
2ν

2ν + 1

)2ν (1

2ν + 1

)
≤ 1

2ν + 1
. (3.23)

Let f (x) = x(μx + 1)2ν(2μx + 1)−2ν . Then

f ′(x) = (2μx + 1)−2ν−1(μx + 1)2ν−1[2μ2x2 + μ(3 − 2ν)x + 1], x ∈ [0,1].
Let g(x) = 2μ2x2 + μ(3 − 2ν)x + 1. Then, it is easy to check that g(x) has a unique zero point x∗ = (4μ)−1[2ν − 3 −√

4ν2 − 12ν + 1] over the domain (0, 1]. And it holds that

g(x) ≥ 0, ∀x ∈ (0, x∗), g(x) ≤ 0, ∀x ∈ [x∗,1].
In addition, f (x) ≤ x, ∀x ∈ [0, 1]. Therefore,

max f (x) = f (x∗) ≤ x∗. (3.24)

x∈(0,1]

X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218 213
Note also that[
4[(2ν − 3)2 − 8]−0.5 + [(2ν − 3)2 − 8]0.5

]2 = 16[(2ν − 3)2 − 8]−1 + (2ν − 3)2 ≥ (2ν − 3)2

⇐⇒
4[4ν2 − 12ν + 1]−0.5 ≥ 2ν − 3 −

√
4ν2 − 12ν + 1.

Hence,

x∗ ≤ μ−1[4ν2 − 12ν + 1]−0.5 ≤ μ−1[4ν2 − 12ν + 1 − 4ν + 15]−0.5 = (2μ)−1(ν − 2)−1. (3.25)

By (3.24) and (3.25),

max
x∈(0,1)

f (x) ≤ (2μ)−1(ν − 2)−1. (3.26)

By (3.21), (3.22), (3.23) and (3.26),

sup
x,y∈(0,1)

|E0(x, y)| ≤ max

{
1

22ν
,

2−1(μ−1 + 1)

ν − 2

}
≤ C0

4(ν − 2)
. (3.27)

sup
x,y∈(0,1)

|E1(x, y)| = sup
x,y∈(0,1)

|r(x, y)r(x, ỹ)|ν x̃ ỹ

∣∣∣∣4(axx̃y + bx̃y ỹβi) + x̃yγ

4(axx̃ + by ỹ) + γ

∣∣∣∣
≤ sup

x,y∈(0,1)

|r(x, y)r(x, ỹ)|ν ≤ max
x∈(0,1)

{
max

y∈(0,0.5]
|r(x,1 − y)|ν, max

y∈[0.5,1)
|r(x, y)|ν

}

≤ 1

2ν
≤
(

μ + 1

2μ + 1

)ν

≤ C0

4(ν − 2)
. (3.28)

Similarly to (3.28), one can prove that

sup
x,y∈(0,1)

|E3(x, y)| ≤ C04−1(ν − 2)−1. (3.29)

sup
x,y∈(0,1)

|E2(x, y)| = sup
x,y∈(0,1)

|r(x, y)r(x̃, y)|ν x̃ ỹ

∣∣∣∣4(axx̃ ỹ + bxy ỹ) + xỹγ

4(axx̃ + by ỹ) + γ

∣∣∣∣
≤ sup

x,y∈(0,1)

|r(x, y)|ν |r(x̃, y)|ν ≤ sup
x∈(0,1)

{
sup

y∈(0,0.5]
, sup

y∈[0.5,1)

}{
|r(x, y)r(x̃, y)|ν

}

≤ max

{
sup

x∈(0,1)

|r(x,0)r(x̃,0)|ν,
1

22ν

}

≤ max

{
sup

x∈(0,1)

[
(μx + 1)(μx̃ + 1)

(2μx + 1)(2μx̃ + 1)

]ν

,
1

22ν

}
. (3.30)

Let �(x) = [(μx + 1)(μx̃ + 1)
]ν [

(2μx + 1)(2μx̃ + 1)
]−ν

. Since �(x) = �(1 −x), ∀x ∈ [0, 1]. Hence, max
x∈[0,1]�(x) = max

x∈[0,0.5]�(x).

Since

max
x∈[0,0.5]�

′(x) = max
x∈[0,0.5]

μ2(2μ + 3)(2x − 1)

[4μ2x(1 − x) + 2μ + 1]2
≤ 0.

Therefore,

max
x∈[0,1]�(x) = �(0) =

(
μ + 1

2μ + 1

)ν

. (3.31)

By (3.30) and (3.31),

sup
x,y∈(0,1)

|E2(x, y)| ≤ C0

4(ν − 2)
, (3.32)

which completes the proof. �

214 X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218
3.2. The convergence analysis of MGM

In this subsection, we show the convergence of MGM(ν, q). Denote by M(ν, q), the iteration matrix of MGM(ν, q). We
denote by Mi(ν, q), Ti(ν), Si , M(ν, q), T(ν) and S with M = Mi respectively. Also, we denote by Ii

i−1, Ii−1
i , the interpolation

operator and restriction operator between level i − 1 and i. Then, Mi(ν, q) with positive integer i ≥ 3 can be written as [10]

Mi(ν,q) = Ti(ν) + Sν
i Ii

i−1Mq
i−1(ν,q)Wi−1

i Sν
i , i ≥ 4, (3.33)

where Wi−1
i =

(
�(i−1)

)−1
Ii−1
i �(i), M3(ν, q) = T3(ν). Denote by Q̃h , Q̃H , Q̃ on fine grid and coarse grid, respectively. Neglect

superscript and subscript of Wi−1
i , and rewrite it as WH

h .

Lemma 6. (See [10, Theorem 8.1.2-3])

Ih
H = Q̃T

h P̂ Q̃H := Q̃T
hdiag(p̂11, ..., p̂M̄1, p̂12, ..., p̂M̄2,, p̂1M̄ , ..., p̂M̄M̄)Q̃H ,

WH
h = Q̃T

H ŴH
h Q̃h := Q̃T

H diag(V̂ 11, ..., V̂ M̄1, V̂ 12, ..., V̂ M̄2,, V̂ 1M̄ , ..., V̂ M̄M̄)Q̃h,

with

p̂i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Îh
H (i, j), i, j ∈K

r,

[0,0]T, i = M̄, j ∈K
r,

[0,0]T, i ∈K
r, j = M̄,

0, i = M̄, j = M̄,

, V̂ i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d̃−1
i j Î H

h (i, j)�(i j)
h , i, j ∈K

r,

[0,0], i = M̄, j ∈ K
r,

[0,0], i ∈K
r, j = M̄,

0, i = M̄, j = M̄,

where Îh
H (i, j), Î H

h (i, j), d̃i j , �
(i j)
h are all given by Lemma 4.

Denote by Sh , S on fine grid. By Lemma 3 and Lemma 6, we immediately obtain

||Sν
h Ih

H ||2 ≤ ||Sν
h ||2||Ih

H ||2 ≤ ||Ih
H ||2 = max

i, j∈Kb
||p̂i j||2 = max

i, j∈Kr
|| Îh

H (i, j)||2 =

max
i, j∈Kr

√
4(α2

i + β2
i)(α2

j + β2
j) = max

i, j∈Kr

√
4−1[3 + cos(2θi)][3 + cos(2θ j)] ≤ 2. (3.34)

By Lemma 3, proof of Theorem 5 and Lemma 6,

||WH
h Sν

h ||2 = max
i, j∈Kb

||V̂ i j Ŝν
i j||2 ≤ max

i, j∈Kb
||V̂ i j||2 ≤ max

i, j∈Kr
||V̂ i j||2 ≤

sup
x,y∈(0,1)

√
4−1[|x̃ ỹ g(x, y)|2 + |x̃yg(x, ỹ)|2 + |xỹg(x̃, y)|2 + |xyg(x̃, ỹ)|2] ≤ 1, (3.35)

where x, y, x̃, ỹ, g(x, y) are notations used in the proof of Theorem 5. Actually, Theorem 5, (3.33), (3.34) and (3.35) provide
following recursive inequalities

||Mi(ν,q)||2 ≤
{

C0
2−ν + 2||Mi−1(ν,q)||q2, ∀i ≥ 4,
C0

2−ν , i = 3,
∀ν ≥ ν0, (3.36)

where both C0 and ν0 are given by Theorem 5. With (3.36), we have following theorem.

Theorem 7. (See [10, Lemma 7.1.6]) Let q ≥ 2. Take

ν∗ = max

{
C0q(2q)(q−1)−1

q − 1
+ 2, ν0

}
, C∗ = C0q

q − 1
.

Then,

sup
i≥3

||Mi(ν,q)||2 ≤ C∗

ν − 2
, ∀ν ≥ ν∗,

where ν0 and C0 are given by Theorem 5.

By Theorem 7, we see that the convergence rate of MGM(ν, q) (q ≥ 2) can be controlled by ν . Moreover, MGM(ν, q)

(q ≥ 2) has a small convergence rate independent of both matrix size and γ whenever ν is large enough. This implies
that Algorithm 2 converges within O(1) iterations. Hence, it follows from Theorem 2 that Algorithm 2 requires O(M2)

operations for q ∈ {2, 3} and properly large ν . Finally, since there are �N/2� + 1 linear systems in (2.11) needing to be
solved, we conclude that (2.11) requires O(N M2) storage and O(N M2) operations by using Algorithm 2.

X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218 215
4. Numerical results

In this section, we use two examples to test AIMGM. All numerical experiments are performed via Console Application
Visual C++ in Visual Studio 2012 on a PC with the configuration: Intel(R) Core(TM) i5-4590 CPU 3.30 GHz and 8 GB RAM.

For the choice of approximation of Caputo’s derivative C0 Dα
t in (2.1), we refer to L1 formula in [24] such that

g(α)

k =
{

[τα�(2 − α)]−1, k = 0,

[(k + 1)1−α − 2k1−α + (k − 1)1−α][τα�(2 − α)]−1, 1 ≤ k ≤ N − 1,
(4.1)

g(k,α) = [(k − 1)1−α − k1−α][τα�(2 − α)]−1, 1 ≤ k ≤ N. (4.2)

Define spatial grids xi = xL + ih1 (0 ≤ i ≤ M + 1), y j = yL + jh2 (0 ≤ j ≤ M + 1), h1 = (xR − xL)/(M + 1), h2 = (yR −
yL)/(M + 1). For any function v(x, y) defined on Ω̄ , denote by vij , v(xi, y j) for i, j ∈ {0, 1, ..., M + 1}. Then, the central
difference approximation to −∇·(p(x, y)∇v) is defined as follows

− ∇·(p(x, y)∇v)|(xi ,y j) ≈
pi+ 1

2 , j(vij − vi+1, j) + pi− 1
2 , j(vi, j − vi−1, j)

h2
1

+
pi, j+ 1

2
(vij − vi, j+1) + pi, j− 1

2
(vi, j − vi, j−1)

h2
2

(4.3)

where

pi+s1, j+s2 = p(xL + (i + s1) ∗ h1, yL + (j + s2) ∗ h2), 1 ≤ i, j ≤ M, s1, s2 ∈ {−1/2, 0, 1/2}.
It is easy to check that (4.2), (4.1) and (4.3) satisfy assumption (2.7) and (2.8). Hence, we use (4.2), (4.1) and (4.3) in all
experiments in this section. Moreover, we choose zebra-line Gauss–Seidel (ZLGS) smoother [10] in numerical experiments
of this section since it has better numerical performance, although we prove convergence of MGM with WBJ smoother in
last section. In details, � and y in (3.1) resulting from (4.3) have following form

� =

⎡
⎢⎢⎢⎢⎢⎣

G1 H1
H1 G2 H2

. . .
. . .

. . .

HM−2 GM−1 HM−1
HM−1 GM

⎤
⎥⎥⎥⎥⎥⎦ , y =

⎡
⎢⎢⎢⎣

y1
y2
...

yM

⎤
⎥⎥⎥⎦ , Gi,Hi ∈C

M×M , yi ∈ C
M×1,

where Gi ’s are all nonsingular tridiagonal blocks. Let xold be an initial guess of x such that xold =
[
(xold

1)T, (xold
2)T, . . . , (xold

M)T
]T

with xold
i ∈ C

M×1. Then, one iteration of ZLGS relaxation is defined as{
xnew

i = G−1
i

(
yi − Hi−1xold

i−1 − Hixold
i+1

)
, i even,

xnew
i = G−1

i

(
yi − Hi−1xnew

i−1 − Hixnew
i+1

)
, i odd.

Moreover, we still use IH
h and Ih

H defined by (3.10) in this section.
According to the suggestion in [15], we set ε = 0.5 ×10−8 to test the approximation method. Although Theorem 7 implies

linear convergence only under the condition of large ν and q ≥ 2, MGM(1, 1) shows a linear convergence in numerical
results. Hence, we choose ν = q = 1 in this section for minimizing number of operations each MGM iteration required.

Define the relative error

EN,M = ||u − ũ||∞
||u||∞ ,

where we denote by u and ũ denote exact solution, approximate solution derived from some numerical method to the
FSDE (1.1)–(1.3) on the gird Ωh × {tn|1 ≤ n ≤ N} respectively. Note that AIMGM only requires to solve first �N/2� + 1 linear
systems in (2.11) by using Algorithm 2. Hence, we denote by “iter”, the average iteration number for Algorithm 2 solving
the �N/2� + 1 linear systems. We also denote by CPU, the running time of some algorithm by unit second.

Example 1. ([24]) In this example, we consider the problem (1.1)–(1.3) with

u(x, y, t) = sin(x) sin(y)t2, f (x, y, t) = sin(x) sin(y)

[
2t2−α

�(3 − α)
+ 2t2

]
, p(x, y) ≡ 1,

on the domain Ω × [0, 0.5], where Ω = (0, π) × (0, π). We solve the problem in Example 1 with AIMGM and BD-ADI
scheme [24] respectively. And the results are listed in Table 1 and Table 2.

216 X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218
Table 1
CPU time and temporal order of AIMGM and BD-ADI scheme when M + 1 = 512.

α N AIMGM BD-ADI

iter CPU EN,M CPU EN,M

1/6 8 7.0 1.263 s 1.1331e−3 0.14 s 4.0907e−2
16 7.0 2.262 s 3.4622e−4 0.265 s 1.9345e−2
32 7.0 4.461 s 1.0557e−4 0.639 s 8.8761e−3
64 7.0 8.658 s 3.2656e−5 1.84 s 4.0137e−3

1/2 32 8.0 4.976 s 1.1615e−3 0.624 s 6.5003e−4
64 8.0 9.765 s 4.1761e−4 1.809 s 2.2950e−4
128 8.0 19.578 s 1.5016e−4 14.57 s 7.9873e−5
256 8.0 39.686 s 5.4395e−5 76.248 s 2.7126e−5

0.99 100 8.9 16.854 s 5.7608e−3 6.938 s 5.9007e−3
200 8.9 34.379 s 2.8715e−3 42.692 s 2.9395e−3
400 8.9 68.53 s 1.4056e−3 220.614 s 1.4623e−3
800 8.7 134.316 s 7.0614e−4 921.213 s 7.2712e−4

Table 2
CPU time and error of AIMGM and BD-ADI scheme when N = 213, α = 0.01.

M + 1 AIMGM BD-ADI

iter CPU EN,M CPU EN,M

4 1.0 0.015 s 3.4545e−2 0.534 s 3.4474e−2
8 5.0 0.171 s 8.5479e−3 2.685 s 8.4773e−3
16 6.0 0.826 s 2.1321e−3 28.796 s 2.0590e−3
32 7.0 3.946 s 5.3271e−4 250.910 s 4.5946e−4
64 7.0 16.309 s 1.3245e−4 1539.707 s 5.9896e−5
128 7.0 66.87 s 3.3016e−5 8394.270 s 3.9975e−5

Table 1 and Table 2 show that CPU cost of BD-ADI increases much faster than that of AIMGM when N and M increase,
which well reflects that AIMGM and BD-ADI require O(M2N log N), O(M2N2) operations, respectively. Especially, in Table 2,
AIMGM runs even 124 times faster than BD-ADI when M = 127. Moreover, the average iteration number of MGM changes
slightly in both Table 1 and Table 2, which implies a good convergence result of MGM. In addition, from Table 1 and
Table 2, we note that error reduction rate of AIMGM is higher than that of BD-ADI scheme in Table 1 and accuracy of the
two schemes are comparable with each other in Table 2, which matches convergence analysis in [24] well. Finally, it is
noticeable that when α = 1/6, AIMGM is much more accurate than BD-ADI in Table 1 although it runs a little slower than
BD-ADI at that case.

Example 2. In this example, we consider the problem (1.1)–(1.3) with

f (x, y, t) = �(4)xyt3−α

�(4 − α)
− exp(xy + x2 + y2)t3,

p(x, y) = exp(xy), u(x, y, t) = xyt3,

on the domain Ω ×[0, 0.5], where Ω = (−1, 1) × (−1, 1). As mentioned in Section 1, the block forward substitution method
may work with some iterative method. Here, we combine the block forward substitution method with MGM, which is called
BFSMGM. In details, the algorithm of BFSMGM for solving the linear system (2.2) is given by

Algorithm 3 BFSMGM.

solve
(

B + g(α)
0 IM2

)
u1 = b1 with Algorithm 2;

for k = 2 : N
f = bk ;
for i = 1 : k − 1

f = f − g(α)

k−i u
i ;

end
solve

(
B + g(α)

0 IM2

)
uk = f with Algorithm 2;

end

Since BD-ADI scheme is only available in the case that p(x, y) is constant, we solve the problem in Example 2 with only
AIMGM and BFSMGM respectively. Note that there are N linear systems need to be solved by Algorithm 2 in Algorithm 3.
Thus, we denote ’iter’ as the average iteration number of BFSMGM. The results are listed in Table 3, Table 4.

X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218 217
Table 3
CPU time and error of AIMGM and BFSMGM when M + 1 = 512.

α N AIMGM BFSMGM

iter CPU EN,M iter CPU EN,M

1/6 32 7.0 4.727 s 2.6110e−5 7.0 4.851 s 2.6110e−5
64 7.0 9.344 s 7.8700e−6 7.0 9.952 s 7.8784e−6
128 7.0 18.798 s 2.3455e−6 7.0 20.592 s 2.3381e−6
256 7.0 38.110 s 6.7767e−7 7.0 44.694 s 6.7846e−7
512 7.0 76.191 s 1.8332e−7 7.0 102.349 s 1.8663e−7

1/2 50 7.0 7.316 s 1.5970e−4 7.0 7.706 s 1.5970e−4
100 7.0 14.405 s 5.7553e−5 7.0 15.646 s 5.7548e−5
200 7.0 29.491 s 2.0605e−5 7.0 33.617 s 2.0605e−5
400 7.0 59.099 s 7.3412e−6 7.0 75.686 s 7.3414e−6
800 7.0 120.358 s 2.6017e−6 7.0 185.494 s 2.6034e−6

0.99 50 7.0 7.285 s 3.2581e−3 7.0 7.722 s 3.2582e−3
100 7.0 14.430 s 1.6240e−3 7.0 15.990 s 1.6241e−3
200 7.0 29.564 s 8.0791e−4 7.0 33.994 s 8.0827e−4
400 7.0 59.049 s 4.0154e−4 7.0 75.666 s 4.0256e−4
800 7.0 121.269 s 1.9948e−4 7.0 184.845 s 2.0169e−4

Table 4
CPU time and error of AIMGM and BFSMGM when N = 15000, α = 0.01.

M + 1 AIMGM BFSMGM

iter CPU EN,M iter CPU EN,M

4 1.0 0.031 s 5.7306e−4 1.0 0.920 s 5.7306e−4
8 5.0 0.312 s 1.1432e−4 5.0 3.478 s 1.1432e−4
16 6.0 1.560 s 2.3803e−5 6.0 21.918 s 2.3803e−5
32 6.0 6.661 s 5.3799e−6 6.0 76.448 s 5.3797e−6
64 7.0 30.992 s 1.2683e−6 7.0 328.002 s 1.2683e−6
128 7.0 127.977 s 3.0824e−7 7.0 1370.954 s 3.0795e−7

Table 3 and Table 4 well reflect that AIMGM and BFSMGM require O(M2 N log N), O(M2N2) operations, respectively.
Especially in Table 4, AIMGM runs much faster than BFSMGM. Iteration numbers of MGM in both Table 3 and Table 4
varying slightly also imply linear convergence of MGM. Accuracy of AIMGM and BFSMGM are comparable with each other
in both Table 3 and Table 4.

5. Concluding remarks

In this paper, we have proposed and studied AIMGM consisting of the approximation method (2.9)–(2.12) and multigrid
method as a fast solver for solving the FSDE (1.1)–(1.3). Theoretically, sufficient conditions (2.7) and (2.8) are exploited to
guarantee high accuracy of the approximation method. The convergence of MGM in the case of constant coefficients is
shown for this special complex shifted Laplacian linear system. Both complexity analysis and numerical results show that
AIMGM requires O(M2N log N) operations which is remarkably cheaper than that of both BD-ADI scheme and BFSMGM as
shown in numerical experiments in Section 4. In addition, complexity analysis in Section 3 shows that AIMGM requires
O(N M2) storage, which implies O(N M2) memory requirement of AIMGM. It is interesting to consider AIMGM for higher
dimensional problem of fractional sub-diffusion equations for future research work.

References

[1] O. Agrawal, Solution for a fractional diffusion–wave equation defined in a bounded domain, Nonlinear Dyn. 29 (2002) 145–155.
[2] A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys. 280 (2015) 424–438.
[3] D. Bini, Parallel solution of certain Toeplitz linear systems, SIAM J. Comput. 13 (1984) 268–276.
[4] J. Bouchaud, A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep. 195 (1990)

127–293.
[5] H. Brunner, L. Ling, M. Yamamoto, Numerical simulations of 2D fractional subdiffusion problems, J. Comput. Phys. 229 (2010) 6613–6622.
[6] J. Chen, F. Liu, Q. Liu, X. Chen, V. Anh, I. Turner, Numerical simulation for the three-dimension fractional sub-diffusion equation, Appl. Math. Model. 38

(2014) 3695–3705.
[7] S. Chen, F. Liu, X. Jiang, I. Turner, K. Burrage, Fast finite difference approximation for identifying parameters in a two-dimensional space-fractional

nonlocal model with variable diffusivity coefficients, SIAM J. Numer. Anal. 54 (2016) 606–624.
[8] G. Golub, C. Loan, Matrix Computations, 3rd edition, Johns Hopkins University Press, Baltimore, 1996.
[9] M. Gupta, R. Manohar, J. Stephenson, High order difference schemes for two-dimensional elliptic equations, Numer. Methods Partial Differ. Equ. 1

(1985) 71–80.
[10] W. Hackbusch, Multigrid Methods and Applications, Springer Science and Business Media, 2013.

http://refhub.elsevier.com/S0021-9991(16)30326-6/bib4F2E502E4167726177616C2D32303032s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib616C696B68616E6F766161s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib42696E69s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib4A2E426F7563686175642D31393930s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib4A2E426F7563686175642D31393930s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib4272756E6E65724832303130s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib6368656E2D6C69752D6C69752D32303134s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib6368656E2D6C69752D6C69752D32303134s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib6368656E2D6C697532303136s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib6368656E2D6C697532303136s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib476F6C75622D4C6F616Es1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib67757074616D6Ds1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib67757074616D6Ds1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib4861636B6275736368572D32303133s1

218 X.-l. Lin et al. / Journal of Computational Physics 323 (2016) 204–218
[11] X. He, T. Lin, Y. Lin, Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal.
Model. 8 (2011) 284–301.

[12] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[13] C. Ji, Z. Sun, The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation, Appl. Math. Comput. 269 (2015)

775–791.
[14] F. Lin, W. Ching, M. Ng, Fast inversion of triangular Toeplitz matrices, Theor. Comput. Sci. 315 (2004) 511–523.
[15] X. Lu, H. Pang, H. Sun, Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations, Numer.

Linear Algebra Appl. 22 (2015) 866–882.
[16] R. Lynch, J. Rice, High accuracy finite difference approximation to solutions of elliptic partial differential equations, Proc. Natl. Acad. Sci. 75 (1978)

2541–2544.
[17] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000) 1–77.
[18] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[19] T. Solomon, E. Weeks, H. Swinney, Observation of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow, Phys. Rev. 71 (1993)

3975–3979.
[20] R. Stenberg, On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math. 63 (1995) 139–148.
[21] F. Zeng, C. Li, F. Liu, I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput. 37

(2015) A55–A78.
[22] F. Zeng, C. Li, F. Liu, I. Turner, The use of finite difference/element approximations for solving the time-fractional subdiffusion equation, SIAM J. Sci.

Comput. 35 (2013) 2976–3000.
[23] J. Zhao, T. Zhang, R. Corless, Convergence of the compact finite difference method for second-order elliptic equations, Appl. Math. Comput. 182 (2006)

1454–1469.
[24] Y. Zhang, Z. Sun, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equations, J. Comput. Phys. 230 (2011)

8713–8728.
[25] M. Zheng, F. Liu, V. Anh, I. Turner, A high-order spectral method for the multi-term time-fractional diffusion equations, Appl. Math. Model. 40 (2016)

4970–4985.

http://refhub.elsevier.com/S0021-9991(16)30326-6/bib68657832303131s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib68657832303131s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib68696C6665727275646F6C662D32303030s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib6A696373756E7A2D32303135s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib6A696373756E7A2D32303135s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib6C696E662D32303034s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib4C75582D32303135s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib4C75582D32303135s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib6C796E6368726531393738s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib6C796E6368726531393738s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib522E4D65747A6C65722D32303030s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib506F646C75626E7931393939s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib542E482E536F6C6F6D6F6E2D31393933s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib542E482E536F6C6F6D6F6E2D31393933s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib7374656E6265726772s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib7A656E672D6C692D6C69752D32303135s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib7A656E672D6C692D6C69752D32303135s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib7A656E672D6C692D6C69752D32303133s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib7A656E672D6C692D6C69752D32303133s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib7A68616F6As1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib7A68616F6As1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib5A68616E672D53756Es1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib5A68616E672D53756Es1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib7A68656E672D6C69752D616E682D32303136s1
http://refhub.elsevier.com/S0021-9991(16)30326-6/bib7A68656E672D6C69752D616E682D32303136s1

	A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation
	1 Introduction
	2 The approximation method
	3 The multigrid solver
	3.1 The convergence analysis of two grid method
	3.2 The convergence analysis of MGM

	4 Numerical results
	5 Concluding remarks
	References

