
 1

Course Syllabus

University of Macau

Faculty of Science and Technology

Department of Computer and Information Science

CISB354 Programming Language

2nd Semester 2014/2015

Part A – Course Outline

Elective course in Computer Science

Course description:
This course provides in-depth coverage of object-oriented programming principles and techniques using C++.
Topics include classes and objects, vectors, overloading, inheritance, polymorphism, templates, etc.

Course type:
Theoretical with substantial laboratory/practice content

Prerequisites:
 SFTW120

Textbook(s) and other required material:
 Paul Deitel and Harvey Deitel. (2009) C++ How to Program. Prentice Hall, US.

References:
 Stephen Prata. (2004). C++ Primer Plus. 5th ed., Sams.

Major prerequisites by topic:
 Programming languages and algorithms

Course objectives:
 Learn the fundamentals, structure, logic, and syntax of object-oriented programming (OOP) in C++
 Design and implement programs using C++
 Run and analyze a given program; identify ways in which it fails
 Apply basic tools to aid in developing programs

Topics covered:
 Introduction (5 hours): These lectures will give an overview of different types of computer languages:

machine languages, assembly languages, and high-level languages. We will introduce the object technology, the
C++ language, and the typical C++ development environment. Students will also have a hands-on experience on
test-driving a C++ application.

 Basic concepts of classes and objects (5 hours): We will learn how to define a class and use it to create an
object, to define member functions to implement the class’s behaviors, to declare data members to implement
the class’s attributes, and initialize a class by constructor.

 Arrays, vectors, and pointers (8 hours): We will review the important data structure of the C language: arrays
and pointers. This includes the topics of declaring, initializing, referencing arrays and pointers. We will also
discuss the relationship and usage of them with functions. The class template vector in the C++ standard library
will be introduced.

 Classes (10 hours): These lectures cover a deeper understanding on C++ classes. We will learn to preprocessor
wrapper, class scope, public and private functions and data, friend functions and classes. The concept of container
classes will also be introduced. Finally, we will learn to use proxy classes to hide implementation details from a
class’s clients.

 Operator overloading (8 hours): We will learn how operator overloading can help to craft classes. This
includes the use of unary and binary operators, converting objects, and the explicit keyword.

 2

 Object-oriented programming techniques (10 hours): These lectures cover the important OOP techniques -
inheritance and polymorphism. We will learn the notion of base classes and derived classes, the use of protected
member access specifier, the use of constructors and destructors, the differences between public, protected, and
private inheritance, the distinction between abstract and concrete classes, the use of virtual functions and
dynamic binding.

 Templates (8 hours): Here, we will study the use of templates to create a group of related (overloaded)
functions. We will learn the differences between class templates and class-template specializations, function
templates and function-template specializations, and to overload function templates.

Class/laboratory schedule:

Timetabled work in hours per week No of teaching
weeks

Total
hours

Total
credits

No/Duratio
n of exam

papers Lecture Tutorial Practice

2 0 2 14 56 3 1 / 3 hours

Student study effort required:

Class contact:

Lecture 28 hours

Hands-on practice 28 hours

Other study effort

Self-study 10 hours

Homework assignment 16 hours

Project / Case study 30 hours

Total student study effort 112 hours

Student assessment:
Final assessment will be determined on the basis of:
Homework 20% Project 30%
Mid-term 20% Final exam 30%

Course assessment:
The assessment of course objectives will be determined on the basis of:
 Homework, project and exams
 Course evaluation

Course outline:

Weeks Topic Course work

1

Introduction
Different types of programming languages, basic object-technology
concepts, a typical C++ development environment, test-drive a
C++ application

2
Introduction to classes and objects
Classes, objects, member functions, data members, constructors,
and destructors

Lab 1

3-5

A deeper look on Classes
Preprocessor wrapper, class scope, public and private functions
and data, friend functions and classes, container classes, proxy
classes

Lab 2, Lab 3, Lab 5,
Mid-term

6-7

Arrays, vectors, and pointers
Declaration, initialization of arrays and pointers, the
relationship between arrays/pointers and functions, class
template vector

Homework 1 and
Lab 4

8
Operator overloading
Unary and binary operators, object conversion, the explicit

Lab 6

 3

Weeks Topic Course work

9-12

OOP techniques - Inheritance and Polymorphism
Base classes and derived classes, protected member access
specifier, constructors and destructors in inheritance
hierarchies, public, protected, and private inheritance, abstract
and concrete classes, virtual functions and dynamic binding

Lab 7

13
UML
UML diagrams, object-oriented design

Project

14 Review for exam

Contribution of course to meet the professional component:
This course prepares students with fundamental knowledge and experiences to object-oriented programming.

Relationship to CS program objectives and outcomes:
This course primarily contributes to the Computer Science program outcomes that develop student abilities to:

(a) An ability to apply knowledge of computing and mathematics to solve complex computing problems in

computer science discipline.

(b) An ability to apply knowledge of a computing specialisation, and domain knowledge appropriate for the

computing specialisation to the abstraction and conceptualisation of computing models

(c) An ability to analyse a problem, and identify and define the computing requirements appropriate to its

solution

(d) An ability to design, implement, and evaluate a computer-based system, process, component, or program

to meet desired needs with appropriate consideration for public health and safety, social and

environmental considerations

Relationship to CS program criteria:

Criterion DS PF AL AR OS NC PL HC GV IS IM SP SE CN

Scale: 1 (highest) to 4 (lowest) 4 2 2 4 1

Discrete Structures (DS), Programming Fundamentals (PF), Algorithms and Complexity (AL), Architecture and
Organization (AR), Operating Systems (OS), Net-Centric Computing (NC), Programming Languages (PL),
Human-Computer Interaction (HC), Graphics and Visual Computing (GV), Intelligent Systems (IS), Information
Management (IM), Social and Professional Issues (SP), Software Engineering (SE), Computational Science (CN).

Course content distribution:

Percentage content for

Mathematics Science and engineering subjects Complementary electives Total

0% 100% 0% 100%

Coordinator:
Prof. Zhiguo Gong

Persons who prepared this description:
Dr. Jiantao Zhou

 4

Part B – General Course Information and Policies

2nd Semester 2014/2015

Instructor: Dr. Jiantao Zhou
 Office: E11-4089
Office hour: 14:30 – 15:30 Every Thursday
 Phone: 88224495
Email: jtzhou@umac.mo

Time/Venue: 09:30-10:45, Friday/E12-G021

Grading distribution:

Percentage Grade Final Grade Percentage Grade Final Grade

100 - 93 A 92 - 88 A

87 - 83 B+ 82 - 78 B

77 - 73 B 72 - 68 C+

67 - 63 C 62 - 58 C

57 - 53 D+ 52 - 50 D

below 50 F

Comment:
The objectives of the lectures are to explain and to supplement the text material. Students are responsible for
the assigned material whether or not it is covered in the lecture. Students who wish to succeed in this course
should read the textbook prior to the lecture and should work all homework and project assignments. You are
encouraged to look at other sources (other texts, etc.) to complement the lectures and text.

Homework policy:
The completion and correction of homework is a powerful learning experience; therefore:
 Homework is due 10 days after assignment unless otherwise noted.
 The course grade will be based on the average of the homework grades.

Course project:
The project is probably the most exciting part of this course and provides students with meaningful experience
to design and implement a medium size system applying all the OOP techniques learnt throughout this course:
 You will work in a group of four students for the course project.
 The requirements will be announced and discussed in class.
 The project includes design, implementation, demonstration, and report writing.

Exam:
One 2-hour mid-term exam will be held during the semester. The final examination will be a 3-hour exam.

Note:
 Check UMMoodle (https://ummoodle.umac.mo/) for announcement, homework and lectures. Report any

mistake on your grades within one week after posting.
 No make-up exam is given except for CLEAR medical proof.
 Cheating is absolutely prohibited by the university.

