
 1

University of Macau

Faculty of Science and Technology

Department of Computer and Information Science

CISB220 Compiler Construction

Syllabus

2nd Semester 2014/2015

Part A – Course Outline

Compulsory course in Computer Science

Course description:
(2-2) 3 credits. Modern compiler design, use of automatic tools, compilation techniques and program intermediate
representations; scanner, recursive descent parser, bottom-up parser, code generation and optimization; semantic
analysis and attribute grammars, transformational attribute grammars.

Course type:
Theoretical with substantial laboratory/practice content

Prerequisites:
 CISB111

Textbook(s) and other required material:
 David A Watt and Deryck F Brown. (2000) Programming Language Processors in JAVA — Compilers and

Interpreters. Prentice Hall, US.

References:
 Alfred V Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D Ullman. (2007). Compiler: Principles, Techniques and

Tools. 2nd Ed., Prentice Hall.
 Charles N. Fischer, Ron K. Cytron, and Richard J. LeBlanc. (2010). Crafting A Compiler. Pearson Higher

Education.

Major prerequisites by topic:
 Programming languages and algorithms
 Logical operations
 Knowledge in trees and graphs
 Formal systems

Course objectives:
 Learn the operation of the major phases of a compiler
 Introduce the theories behind the various phases, including regular expressions, context free grammars, and

finite state automata
 Apply the theoretical foundations that form the basis of compilation
 Design and implement parts of a compiler for a small imperative-style programming language
 Practice software engineering design principles on a medium size project

Topics covered:
 Basic Concepts (4 hours): Review the concepts of high-level programming languages, and their syntax,

contextual constraints and semantics, with examples from well-known programming systems. Introduce basic
terminology of language processors: translators, compilers, interpreters, source and target languages, and real
and abstract machines. Study the way of using language processors with Tombstone diagram.

 Theoretical Foundations (4 hours): Review the fundamentals of formal language concepts, including
finite-state automata, regular expressions, construction of equivalent deterministic finite-state automata from
regular expressions, context-free grammars, grammar notation, derivations, and parse trees.

 Syntactic Analysis (8 hours): Study the details of syntactic analysis, including scanning, parsing, and abstract
syntax tree construction. Introduce recursive-descent parsing techniques, and show how a parser and scanner
can be systematically constructed from the source language's syntactic specification.

 2

 Contextual Analysis (4 hours): Study the details of the contextual analysis module, in case of that the source
language exhibits static bindings and is statically typed. Introduce the techniques to validate the identifier which
relates to language's scope rules, and type checking which relates to the language's type rules.

 Run-Time Organization (6 hours): Discuss the relationship between the source language and the target
machine. Show how target machine instructions and storage must be marshaled to support the higher-level
concepts of the source language. The topics include data representation, expression evaluation, storage
allocation, routines and their arguments, garbage collection, and run-time organization of simple object-oriented
languages.

 Code Generation (6 hours): Study the details of code generation. Show how to organize the translation from
source language to object code. It relates the selection of object code to the semantics of the source language in
a stack-based machine. Basic techniques of code optimization are introduced at different phases: profiler
optimization, intermediate code optimization and target code optimization.

 Interpreters & Compiler Tools (3 hours): Look inside interpreters. It gives examples of interpreters for both
low-level and high-level languages, as well as introduces the compiler construction tools: Lex & Yacc.

Class/laboratory schedule:

Timetabled work in hours per week No of teaching
weeks

Total
hours

Total
credits

No/Duratio
n of exam

papers Lecture Tutorial Practice

2 2 Nil 14 56 3 1 / 3 hours

Student study effort required:

Class contact:

Lecture 28 hours

Tutorial 28 hours

Other study effort

Self-study 28 hours

Homework assignment 6 hours

Project / Case study 15 hours

Total student study effort 105 hours

Student assessment:
Final assessment will be determined on the basis of:
Homework 10% Project 20%
Mid-term 30% Final exam 40%

Course assessment:
The assessment of course objectives will be determined on the basis of:
 Homework, project and exams
 Course evaluation

Course outline:

Weeks Topic Course work

1-2

Introduction
Specification of programming language, language processors,
Tombstone diagrams, bootstrapping, architecture of compiler,
different analytical phases

3
Theoretical Foundations
Finite-state automata, regular expression, context-free grammar

4-6

Syntactic Analysis
Grammar transformation, parsing strategy, development of
recursive-descent parser, intermediate representation (abstract
syntax trees), scanner and error handling

Assignment#1 & #2
Project – Task#1

7-8
Contextual Analysis
Organization of identification, type & scope checking, analysis

Project – Task#2

 3

Weeks Topic Course work

algorithm

9-10
Run-Time Organization
Data representation, expression evaluation, storage allocation,
routines and heap storage allocation

Midterm exam
Project – Task#3

11-12
Code Generation
Code function, code template, generation algorithm,
manipulation of constants & variables, procedures & functions

Assignment#3

13
Interpretation
Interactive interpretation, recursive interpretation

14 Project Demonstration

Contribution of course to meet the professional component:
This course prepares students with fundamental knowledge and experiences to constructing a language processor.

Relationship to CS program objectives and outcomes:
This course primarily contributes to the Computer Science program outcomes that develop student:
(a) An ability to apply knowledge of computing and mathematics appropriate to the programme outcomes

and to the discipline;
(c) An ability to analyse a problem, and identify and define the computing requirements appropriate to its

solution.

Relationship to CS program criteria:

Criterion DS PF AL AR OS NC PL HC GV IS IM SP SE CN

Scale: 1 (highest) to 4 (lowest) 4 2 1 2

Discrete Structures (DS), Programming Fundamentals (PF), Algorithms and Complexity (AL), Architecture and
Organization (AR), Operating Systems (OS), Net-Centric Computing (NC), Programming Languages (PL),
Human-Computer Interaction (HC), Graphics and Visual Computing (GV), Intelligent Systems (IS), Information
Management (IM), Social and Professional Issues (SP), Software Engineering (SE), Computational Science (CN).

Course content distribution:

Percentage content for

Mathematics Science and engineering subjects Complementary electives Total

0% 100% 0% 100%

Persons who prepared this description:
Dr. Fai Wong

 4

Part B – General Course Information and Policies

2nd Semester 2014/2015

Instructor: Dr. Fai Wong Office: E11-4010
Office hour: Mon ~ Fri 11:00 am – 13:00 pm, or by appointment Phone: 8822 4478
Email: derekfw@umac.mo

Time/Venue: Wed 11:00 – 12:45, E11-1018 (tutorial)
 Fri 14:00 – 15:45, E11-1015 (lecture)

Grading distribution:

Percentage Grade Final Grade Percentage Grade Final Grade

100 - 93 A 92 - 88 A

87 - 83 B+ 82 - 78 B

77 - 73 B 72 - 68 C+

67 - 63 C 62 - 58 C

57 - 53 D+ 52 - 50 D

below 50 F

Comment:
The objectives of the lectures are to explain and to supplement the text material. Students are responsible for
the assigned material whether or not it is covered in the lecture. Students who wish to succeed in this course
should read the textbook prior to the lecture and should work all homework and project assignments. You are
encouraged to look at other sources (other texts, etc.) to complement the lectures and text.

Homework policy:
The completion and correction of homework is a powerful learning experience; therefore:
 There will be approximately 3 homework assignments.
 Homework is due one week after assignment unless otherwise noted, no late homework is accepted.
 The course grade will be based on the average of the HW grades.

Course project:
The project is probably the most exciting part of this course and provides students with meaningful
experience to extend and enhance an existing compiler and interpreter:
 You will work with group of two students for the course project.
 The requirements will be announced and discussed in class.
 The project will be presented at the end of semester.

Exams:
One 2-hour mid-term exam will be held during the semester. Both the mid-term and final exams are closed
book examinations.

Note:
 Check UMMoodle (https://ummoodle.umac.mo/) for announcement, homework and lectures. Report any

mistake on your grades within one week after posting.
 No make-up exam is given except for CLEAR medical proof.
 Cheating is absolutely prohibited by the university.

Student Disabilities Support Service:
The University of Macau is committed to providing an equal opportunity in education to persons with disabilities. If

you are a student with a physical, visual, hearing, speech, learning or psychological impairment(s) which substantially

limit your learning and/or activities of daily living, you are encouraged to communicate with your instructors about

your impairment(s) and the accommodations you need in your studies. You are also encouraged to contact the Student

Disability Support Service of the Student Counselling and Development Section (SCD), which provides appropriate

resources and accommodations to allow each student with a disability to have an equal opportunity in education,

university life activities and services at the University of Macau. To learn more about the service, please contact SCD at

scd.disability@umac.mo, or 8397 4901 or visit the following website:

http://www.umac.mo/sao/scd/sds/aboutus/en/scd_mission.php

mailto:derekfw@umac.mo

 5

Appendix:

Rubric for Program Outcomes

(a) An ability to apply knowledge of computing and mathematics appropriate to the

programme outcomes and to the discipline

Measurement

Dimension
Excellent (80-100%) Average (60-79%) Poor (<60%)

1. An ability to apply

knowledge of

computing to the

solution of complex

computing problems.

Students understand the

computing principles, and

their limitations in the

respective applications. Use

the computing principles to

formulate and solve

complex computing

problems.

Students understand the

computing principles, and

their limitations in the

respective applications. But

they have trouble in

applying these computing

principles to formulate and

solve complex computing

problems.

Students do not understand

the computing principles,

and their limitations in the

respective applications. Do

not know how to apply the

appropriate computing

principles to formulate and

solve complex computing

problems.

2. An ability to apply

knowledge of

mathematics to the

solution of complex

computing problems.

Students understand the

mathematical principles,

e.g., calculus, linear algebra,

probability and statistics,

relevant to computer

science, and their limitations

in the respective

applications. Use

mathematical principles to

formulate and solve

complex computing

problems.

Students understand the

theoretical background and

know how to choose

mathematical principles

relevant to computer

science. But they have

trouble in applying these

mathematical principles to

formulate and solve

complex computing

problems.

Students do not understand

the mathematical principles

and do not know how to

formulate and solve

complex computing

problems.

(c) An ability to analyse a problem, and identify and define the computing requirements

appropriate to its solution

Measurement

Dimension
Excellent (80-100%) Average (60-79%) Poor (<60%)

1. An ability to

understand problem

and identify the

fundamental

formulation

Students understand

problem correctly and can

identify the fundamental

formulation

Student understand problem

correctly, but have trouble

in identifying the

fundamental formulation

Students cannot understand

problem correctly, and they

do not know how to

identify the fundamental

formulation

2. An ability to choose

and properly apply the

correct techniques

Students know how to

choose and properly apply

the correct techniques to

solve problem.

Students can choose correct

techniques but have trouble

in applying these techniques

to solve problem.

Students have trouble in

choosing the correct

techniques to solve

problem.

